一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Hugging Face大語言模型優(yōu)化技術(shù)

jf_WZTOguxH ? 來源:AI前線 ? 2023-10-09 16:25 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

大語言模型的生產(chǎn)部署存在兩個主要的挑戰(zhàn),一個是需要大量的參數(shù),一個是需要處理非常長的用于表示上下文信息的輸入序列。Hugging Face 基于他們提供大模型服務(wù)的經(jīng)驗分享了一些克服這些障礙的技術(shù)。

Patrick von Platen 在文中介紹的 Hugging Face 研究的三種技術(shù)是降低數(shù)值精度、使用一種叫作 Flash Attention 的注意力算法,以及使用專門的推理架構(gòu)。

大語言模型需要大量的 VRAM 來加載,從幾十 (bigcode/starcoder) 到數(shù)百 GB (Llama、Bloom、GPT3)。第一個優(yōu)化手段是從 float32 切換到 bfloat16 精度:

現(xiàn)在幾乎所有的模型都是基于 bfloat16 訓(xùn)練的,如果你的 GPU 支持 bfloat16,就沒有理由基于全 float32 精度運行模型。float32 不會給出比訓(xùn)練模型所使用的精度更好的推理結(jié)果。

這可以使總體內(nèi)存消耗減少一半,但可惜的是,在許多情況下仍然需要很大的內(nèi)存。一種更激進的方法是將模型權(quán)重量化為 8 位或 4 位,這已經(jīng)被證明不會導(dǎo)致顯著的性能下降。

量化對于文本生成來說特別有效,因為我們所關(guān)心的是選擇最有可能的下一個標記集合,而不是下一個標記 Logit 分布的確切值。

這將進一步減少所需的內(nèi)存,使得在只有 16GB VRAM 的 GPU 上運行較小的模型成為可能,盡管代價是推理時間稍長。

von Platen 寫道,使用 Flash Attention 是另一相關(guān)鍵的優(yōu)化,它是大語言模型用來理解輸入標記上下文關(guān)系的自注意力層的一種算法,有可能打破輸入標記數(shù)量的二次增長。

因為該算法太過復(fù)雜,無法在這里描述,但可以這么說,它利用了 softmax 規(guī)范化統(tǒng)計數(shù)據(jù)和一些數(shù)學(xué)手段,在只需要隨輸入標記線性增長的內(nèi)存的情況下提供相同的輸出。推理性能也得益于算法使用了更快的 SRAM 而不是更慢的 GPU VRAM。

在實踐中,目前絕對沒有理由不使用 Flash Attention。該算法在數(shù)學(xué)層面給出了相同的輸出,并且速度更快,內(nèi)存效率更高。

Here recent research can help to make the right choice with two components that quickly become bottlenecks, says von Platen,positional embeddingsand thekey-value cache.

在生產(chǎn)環(huán)境中部署大語言模型的第三項優(yōu)化措施是選擇正確的架構(gòu),讓它們能夠有效地處理長文本輸入。von Platen 寫道,最近的研究有助于我們?nèi)绾螌蓚€很快成為瓶頸的組件做出選擇——一個是 _ 位置嵌入 (positional embeddings)_,一個是 _ 鍵值緩存 _。

位置嵌入通過將每個標記的位置編碼為數(shù)字表示來幫助語言大模型理解序列順序。對于需要處理大型文本輸入任務(wù)的大語言模型,應(yīng)該使用 RoPE 和 ALiBi 等相對位置嵌入技術(shù)進行訓(xùn)練。

RoPE 和 ALiBi 位置編碼都可以外推到訓(xùn)練期間未遇到過的輸入長度,而事實證明,與 RoPE 相比,外推對于開箱即用的 ALiBi 的效果要好得多。

目前的許多大語言模型中已經(jīng)在使用這兩種算法。

鍵值緩存可以作為對對話上下文進行編碼的一種方法。鍵值緩存在發(fā)生每個新交互時增加一個元素,這比為每個請求編碼 / 解碼上下文的方法要有效得多。von Platen 詳細介紹了兩類鍵值緩存,即 Multi-Query-Attention (MQA) 和 Grouped-Query-Attention(GQA) 。

von Platen 的文章所涵蓋的內(nèi)容不只有本文所概述的這些,他的文章中還提供了實際的例子來證明他的觀點,所以請不要錯過他的文章。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4945

    瀏覽量

    131228
  • 語言模型
    +關(guān)注

    關(guān)注

    0

    文章

    561

    瀏覽量

    10788
  • 大模型
    +關(guān)注

    關(guān)注

    2

    文章

    3141

    瀏覽量

    4066

原文標題:Hugging Face 大語言模型優(yōu)化技術(shù)

文章出處:【微信號:AI前線,微信公眾號:AI前線】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    歐洲借助NVIDIA Nemotron優(yōu)化主權(quán)大語言模型

    NVIDIA 正攜手歐洲和中東的模型構(gòu)建商與云提供商,共同優(yōu)化主權(quán)大語言模型 (LLM),加速該地區(qū)各行業(yè)采用企業(yè)級 AI。
    的頭像 發(fā)表于 06-12 15:42 ?427次閱讀

    利用英特爾OpenVINO在本地運行Qwen2.5-VL系列模型

    近期阿里通義實驗室在 Hugging Face 和 ModelScope 上開源了 Qwen2.5-VL 的 Base 和 Instruct 模型,包含 3B、7B 和 72B 在內(nèi)的 3 個
    的頭像 發(fā)表于 03-12 13:42 ?1016次閱讀
    利用英特爾OpenVINO在本地運行Qwen2.5-VL系列<b class='flag-5'>模型</b>

    從OpenVINO? 2019_R3下載的face-detection-retail-0004模型,運行時報錯怎么解決?

    從 OpenVINO? 2019_R3 下載的 face-detection-retail-0004 模型。 構(gòu)建開源OpenVINO?版本 2020.1 運行 Interactive
    發(fā)表于 03-05 06:00

    語言模型的解碼策略與關(guān)鍵優(yōu)化總結(jié)

    本文系統(tǒng)性地闡述了大型語言模型(LargeLanguageModels,LLMs)中的解碼策略技術(shù)原理及其實踐應(yīng)用。通過深入分析各類解碼算法的工作機制、性能特征和優(yōu)化方法,為研究者和工
    的頭像 發(fā)表于 02-18 12:00 ?586次閱讀
    大<b class='flag-5'>語言</b><b class='flag-5'>模型</b>的解碼策略與關(guān)鍵<b class='flag-5'>優(yōu)化</b>總結(jié)

    Hugging Face推出最小AI視覺語言模型

    Hugging Face平臺于1月23日發(fā)布博文,推出了兩款令人矚目的輕量級AI模型——SmolVLM-256M-Instruct和SmolVLM-500M-Instruct。 其中
    的頭像 發(fā)表于 01-24 14:15 ?953次閱讀

    【「基于大模型的RAG應(yīng)用開發(fā)與優(yōu)化」閱讀體驗】+Embedding技術(shù)解讀

    生成回答。在特定領(lǐng)域或任務(wù)中,可以通過微調(diào)Embedding模型來提高檢索的相關(guān)性和準確性。Embedding在大模型RAG技術(shù)中發(fā)揮著至關(guān)重要的作用。它不僅實現(xiàn)了文本向量化,還為信息檢索和文本生成提供了基礎(chǔ)。通過不斷
    發(fā)表于 01-17 19:53

    【「基于大模型的RAG應(yīng)用開發(fā)與優(yōu)化」閱讀體驗】+大模型微調(diào)技術(shù)解讀

    今天學(xué)習(xí)<基于大模型的RAG應(yīng)用開發(fā)與優(yōu)化>這本書。大模型微調(diào)是深度學(xué)習(xí)領(lǐng)域中的一項關(guān)鍵技術(shù),它指的是在已經(jīng)預(yù)訓(xùn)練好的大型深度學(xué)習(xí)模型
    發(fā)表于 01-14 16:51

    AI大語言模型開發(fā)步驟

    開發(fā)一個高效、準確的大語言模型是一個復(fù)雜且多階段的過程,涉及數(shù)據(jù)收集與預(yù)處理、模型架構(gòu)設(shè)計、訓(xùn)練與優(yōu)化、評估與調(diào)試等多個環(huán)節(jié)。接下來,AI部落小編為大家詳細闡述AI大
    的頭像 發(fā)表于 12-19 11:29 ?896次閱讀

    如何優(yōu)化自然語言處理模型的性能

    優(yōu)化自然語言處理(NLP)模型的性能是一個多方面的任務(wù),涉及數(shù)據(jù)預(yù)處理、特征工程、模型選擇、模型調(diào)參、
    的頭像 發(fā)表于 12-05 15:30 ?1700次閱讀

    語言模型開發(fā)語言是什么

    在人工智能領(lǐng)域,大語言模型(Large Language Models, LLMs)背后,離不開高效的開發(fā)語言和工具的支持。下面,AI部落小編為您介紹大語言
    的頭像 發(fā)表于 12-04 11:44 ?693次閱讀

    云端語言模型開發(fā)方法

    云端語言模型的開發(fā)是一個復(fù)雜而系統(tǒng)的過程,涉及數(shù)據(jù)準備、模型選擇、訓(xùn)練優(yōu)化、部署應(yīng)用等多個環(huán)節(jié)。下面,AI部落小編為您分享云端語言
    的頭像 發(fā)表于 12-02 10:48 ?688次閱讀

    語言模型優(yōu)化生成管理方法

    語言模型優(yōu)化生成管理是一個系統(tǒng)工程,涉及模型架構(gòu)、數(shù)據(jù)處理、內(nèi)容控制、實時響應(yīng)以及倫理監(jiān)管等多個層面。以下,是對大語言
    的頭像 發(fā)表于 12-02 10:45 ?400次閱讀

    【《大語言模型應(yīng)用指南》閱讀體驗】+ 基礎(chǔ)知識學(xué)習(xí)

    今天來學(xué)習(xí)大語言模型在自然語言理解方面的原理以及問答回復(fù)實現(xiàn)。 主要是基于深度學(xué)習(xí)和自然語言處理技術(shù)。 大
    發(fā)表于 08-02 11:03

    Hugging Face科技公司推出SmolLM系列語言模型

    7月22日最新資訊,Hugging Face科技公司在語言模型領(lǐng)域再創(chuàng)新高,正式推出了SmolLM系列——一款專為適應(yīng)多樣計算資源而設(shè)計的緊湊型語言
    的頭像 發(fā)表于 07-23 16:35 ?736次閱讀

    【《大語言模型應(yīng)用指南》閱讀體驗】+ 俯瞰全書

    的大語言模型設(shè)計技術(shù)人員閱讀,主要包括大語言模型優(yōu)化方法、Agent系統(tǒng)調(diào)優(yōu)以及
    發(fā)表于 07-21 13:35