一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工神經(jīng)網(wǎng)絡(luò)到底有多強(qiáng)?即將超越人類的6大工作領(lǐng)域

DPVg_AI_era ? 2017-12-11 15:32 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

目前,不同于一次處理多個事物的人腦,機(jī)器人必須以線性方式“思考”。在某些領(lǐng)域,AI已經(jīng)打敗人類,深度神經(jīng)網(wǎng)絡(luò)學(xué)會了交談,駕駛汽車,獲得電子游戲的勝利,畫圖,并幫助科學(xué)發(fā)現(xiàn)。

這里有六個領(lǐng)域,人工神經(jīng)網(wǎng)絡(luò)證明他們可以超越人類的智慧。

1. 圖像和物體識別

機(jī)器在圖像和物體識別方面有很好的記錄。Geoff Hinton發(fā)明的膠囊網(wǎng)絡(luò)幾乎減少了以前的最佳錯誤率,這個測試挑戰(zhàn)軟件識別玩具。即使視圖與之前分析的視圖不同,在各種掃描中使用增加量的這些膠囊也允許系統(tǒng)更好地識別物體。

另一個例子來自一個最先進(jìn)的網(wǎng)絡(luò),該網(wǎng)絡(luò)經(jīng)過標(biāo)記圖像數(shù)據(jù)庫的訓(xùn)練,能夠比相同任務(wù)訓(xùn)練100小時的博士更好地分類對象。

2. 電子游戲

Google的DeepMind使用深度學(xué)習(xí)技術(shù),被稱為深度強(qiáng)化學(xué)習(xí)。研究人員用這種方法教計(jì)算機(jī)玩Atari游戲Breakout。電腦沒有以任何特定的方式教授或編程玩游戲。相反,它在觀看比分時被賦予了鍵盤的控制權(quán),其目標(biāo)是最大化得分。玩了兩個小時后,電腦成了游戲的專家。

深度學(xué)習(xí)社區(qū)正在進(jìn)行一場比賽,訓(xùn)練計(jì)算機(jī)在幾乎所有你能想到的游戲中擊敗人類,包括太空侵略者,毀滅戰(zhàn)士,乒乓球和魔獸世界。在大多數(shù)這些游戲中,深度學(xué)習(xí)網(wǎng)絡(luò)已經(jīng)勝過有經(jīng)驗(yàn)的玩家。電腦沒有編程玩游戲;他們只是通過玩耍學(xué)習(xí)。

3. 語音生成和識別

去年,Google發(fā)布了WaveNet,百度發(fā)布了Deep Speech。兩者都是自動生成語音的深度學(xué)習(xí)網(wǎng)絡(luò)。系統(tǒng)學(xué)會自己模仿人類的聲音,并隨著時間的推移而改善。將他們的言論與真實(shí)的人物區(qū)別開來,這要比想像中難得多。

由牛津大學(xué)和Google DeepMind科學(xué)家LipNet創(chuàng)建的一個深度網(wǎng)絡(luò),在閱讀人們的嘴唇方面達(dá)到了93%的成功,普通的人類嘴唇閱讀器只有52%的成功率。華盛頓大學(xué)的一個小組使用唇形同步來創(chuàng)建一個系統(tǒng),將合成音頻設(shè)置為現(xiàn)有視頻。

4. 藝術(shù)和風(fēng)格的模仿

神經(jīng)網(wǎng)絡(luò)可以研究特定藝術(shù)品的筆畫,顏色和陰影中的圖案。在此基礎(chǔ)上,可以將原作的風(fēng)格轉(zhuǎn)化為新的形象。

DeepArt.io就是一個例子,該公司創(chuàng)建的應(yīng)用程序使用深度學(xué)習(xí)來學(xué)習(xí)數(shù)百種不同的風(fēng)格,可以將其應(yīng)用于照片。藝術(shù)家和程序員Gene Kogan還根據(jù)從埃及象形文字中學(xué)到的算法樣式,應(yīng)用風(fēng)格轉(zhuǎn)換來修改蒙娜麗莎。

5. 預(yù)測

斯坦福大學(xué)研究人員蒂姆尼特·格布魯(Timnit Gebru)拿走了五千萬張谷歌街景圖片,探索一個深度學(xué)習(xí)網(wǎng)絡(luò)可以做些什么。計(jì)算機(jī)學(xué)會了本地化和識別汽車。它檢測到超過2200萬輛汽車,包括他們的制造商,型號,車型和年份。這個系統(tǒng)應(yīng)用的一個例子包括了選民路線開始和停止的跡象。根據(jù)分析,“如果在15分鐘車程內(nèi)遇到的轎車數(shù)量超過皮卡車數(shù)量,那么在下次總統(tǒng)選舉期間,這個城市很可能會投票給民主黨人(88%的概率)。

來自Google Sunroof的機(jī)器的另一個例子比人類提供更準(zhǔn)確的預(yù)測。該技術(shù)使用來自Google Earth的航空照片創(chuàng)建屋頂?shù)?D模型,將其與周圍的樹木和陰影區(qū)分開來。然后使用太陽的軌跡來預(yù)測太陽能電池板根據(jù)位置規(guī)格可以從屋頂產(chǎn)生多少能量。

6. 網(wǎng)站設(shè)計(jì)修改

人工智能在網(wǎng)站建設(shè)者中的整合可以幫助更快更有效地修改網(wǎng)站,并且可能比人類更準(zhǔn)確。像這樣的系統(tǒng)的底層技術(shù)提供了一個平均用戶對網(wǎng)站外觀的意見,這告訴設(shè)計(jì)師網(wǎng)站設(shè)計(jì)不好或好。今天,網(wǎng)站建設(shè)者要么使用深度網(wǎng)絡(luò)來修改設(shè)計(jì),要么計(jì)劃在不久的將來直接使用它們。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:人工神經(jīng)網(wǎng)絡(luò)完爆人類的6大領(lǐng)域:看車都能預(yù)測選舉

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?665次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    自學(xué)習(xí)能力 : BP神經(jīng)網(wǎng)絡(luò)能夠通過訓(xùn)練數(shù)據(jù)自動調(diào)整網(wǎng)絡(luò)參數(shù),實(shí)現(xiàn)對輸入數(shù)據(jù)的分類、回歸等任務(wù),無需人工進(jìn)行復(fù)雜的特征工程。 泛化能力強(qiáng) : BP神經(jīng)網(wǎng)絡(luò)通過訓(xùn)練數(shù)據(jù)學(xué)習(xí)到的特征表示
    的頭像 發(fā)表于 02-12 15:36 ?919次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural N
    的頭像 發(fā)表于 02-12 15:15 ?855次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識和多種算法。在本文中,我們會介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工
    的頭像 發(fā)表于 01-09 10:24 ?1188次閱讀
    <b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    自然語言處理是人工智能領(lǐng)域的一個重要分支,它致力于使計(jì)算機(jī)能夠理解、解釋和生成人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)作為一種強(qiáng)大的模型,在圖像識別和語音處理等
    的頭像 發(fā)表于 11-15 14:58 ?804次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?1868次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN
    的頭像 發(fā)表于 11-15 09:42 ?1125次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與工作機(jī)制

    的結(jié)構(gòu)與工作機(jī)制的介紹: 一、LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu) LSTM神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)主要包括以下幾個部分: 記憶單元(Memory Cell) : 記憶單元是LSTM網(wǎng)絡(luò)的核心,負(fù)責(zé)在整個序列
    的頭像 發(fā)表于 11-13 10:05 ?1631次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)在語音識別中的應(yīng)用實(shí)例

    語音識別技術(shù)是人工智能領(lǐng)域的一個重要分支,它使計(jì)算機(jī)能夠理解和處理人類語言。隨著深度學(xué)習(xí)技術(shù)的發(fā)展,特別是長短期記憶(LSTM)神經(jīng)網(wǎng)絡(luò)的引入,語音識別的準(zhǔn)確性和效率得到了顯著提升。
    的頭像 發(fā)表于 11-13 10:03 ?1851次閱讀

    Moku人工神經(jīng)網(wǎng)絡(luò)101

    不熟悉神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識,或者想了解神經(jīng)網(wǎng)絡(luò)如何優(yōu)化加速實(shí)驗(yàn)研究,請繼續(xù)閱讀,探索基于深度學(xué)習(xí)的現(xiàn)代智能化實(shí)驗(yàn)的廣闊應(yīng)用前景。什么是神經(jīng)網(wǎng)絡(luò)?“人工
    的頭像 發(fā)表于 11-01 08:06 ?664次閱讀
    Moku<b class='flag-5'>人工</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>101

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    許多種類型,但本文將只關(guān)注卷積神經(jīng)網(wǎng)絡(luò)(CNN),其主要應(yīng)用領(lǐng)域是對輸入數(shù)據(jù)的模式識別和對象分類。CNN是一種用于深度學(xué)習(xí)的 人工神經(jīng)網(wǎng)絡(luò) 。這種網(wǎng)
    發(fā)表于 10-24 13:56

    數(shù)據(jù)智能系列講座第3期—交流式學(xué)習(xí):神經(jīng)網(wǎng)絡(luò)的精細(xì)與或邏輯與人類認(rèn)知的對齊

    鷺島論壇數(shù)據(jù)智能系列講座第3期「交流式學(xué)習(xí):神經(jīng)網(wǎng)絡(luò)的精細(xì)與或邏輯與人類認(rèn)知的對齊」(25日)20:00精彩開播期待與您云相聚,共襄學(xué)術(shù)盛宴!|直播信息報(bào)告題目交流式學(xué)習(xí):神經(jīng)網(wǎng)絡(luò)的精細(xì)與或邏輯與
    的頭像 發(fā)表于 09-25 08:06 ?428次閱讀
    數(shù)據(jù)智能系列講座第3期—交流式學(xué)習(xí):<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的精細(xì)與或邏輯與<b class='flag-5'>人類</b>認(rèn)知的對齊

    matlab 神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析

    matlab神經(jīng)網(wǎng)絡(luò) 數(shù)學(xué)建模數(shù)值分析 精通的可以討論下
    發(fā)表于 09-18 15:14

    如何構(gòu)建多層神經(jīng)網(wǎng)絡(luò)

    構(gòu)建多層神經(jīng)網(wǎng)絡(luò)(MLP, Multi-Layer Perceptron)模型是一個在機(jī)器學(xué)習(xí)和深度學(xué)習(xí)領(lǐng)域廣泛使用的技術(shù),尤其在處理分類和回歸問題時。在本文中,我們將深入探討如何從頭開始構(gòu)建一個多層神經(jīng)網(wǎng)絡(luò)模型,包括模型設(shè)計(jì)、
    的頭像 發(fā)表于 07-19 17:19 ?1565次閱讀

    Python自動訓(xùn)練人工神經(jīng)網(wǎng)絡(luò)

    人工神經(jīng)網(wǎng)絡(luò)(ANN)是機(jī)器學(xué)習(xí)中一種重要的模型,它模仿了人腦神經(jīng)元的工作方式,通過多層節(jié)點(diǎn)(神經(jīng)元)之間的連接和權(quán)重調(diào)整來學(xué)習(xí)和解決問題。
    的頭像 發(fā)表于 07-19 11:54 ?701次閱讀