一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

端到端在自動(dòng)泊車的應(yīng)用

佐思汽車研究 ? 來源:佐思汽車研究 ? 2024-12-18 11:38 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

與城市環(huán)境的復(fù)雜性和高速公路駕駛的風(fēng)險(xiǎn)相比,停車場(chǎng)景的特點(diǎn)是低速、空間有限和高可控性。這些特點(diǎn)為在車輛中逐步部署端到端自動(dòng)駕駛能力提供了可行的途徑。最重要的是自動(dòng)泊車對(duì)時(shí)間不敏感,而自動(dòng)駕駛幀率至少要做到15Hz以上。這樣就對(duì)存儲(chǔ)和算力需求降低很多。

d69ccade-bc30-11ef-8732-92fbcf53809c.png

上海交通大學(xué)的五位學(xué)生發(fā)表了一篇端到端自動(dòng)泊車的論文:《ParkingE2E: Camera-based End-to-end Parking Network from Images to Planning》,比較接近落地,由于是學(xué)術(shù)研究,這些學(xué)生沒有得到汽車產(chǎn)業(yè)界的支持,因此他們?nèi)匀皇褂昧藗鹘y(tǒng)PC,論文里只是含糊地說用了英特爾的UNC小型臺(tái)式機(jī)或者叫Mini PC。實(shí)際UNC性能千差萬(wàn)別,一般是英特爾9代或9代以上的CPU,也有用12代筆記本電腦低功耗CPU的,16GB或16GB以上的內(nèi)存。這樣的電腦CPU算力仍然是英偉達(dá)Orin的2-4倍,AI能力自然很低,但有強(qiáng)大的CPU支撐,整體上處理AI任務(wù)時(shí),差不多近似或略超英偉達(dá)Orin的性能。換句話說,這個(gè)可以用英偉達(dá)Orin來實(shí)現(xiàn),具備落地的可能性。

流程如下圖。

d6c5094a-bc30-11ef-8732-92fbcf53809c.jpg

圖片來源:網(wǎng)絡(luò)

有一點(diǎn)需要指出,找尋停車位目前最佳或主要傳感器仍然是超聲波,視覺還是不如超聲波雷達(dá),因此論文中省略了車位尋找這一過程,論文應(yīng)該是使用了AUTOWARE開源無(wú)人駕駛系統(tǒng),這是日本名古屋大學(xué)開發(fā)的基于ROS2的開源無(wú)人駕駛系統(tǒng),主要用于科研。其中導(dǎo)航和可視化模塊是RVIZ。論文直接用RVIZ模塊選定車位。

使用端到端神經(jīng)網(wǎng)絡(luò)Nθ來模仿專家軌跡進(jìn)行訓(xùn)練,定義數(shù)據(jù)集為:

d6e4be02-bc30-11ef-8732-92fbcf53809c.png

軌跡索引 i∈[1,M],軌跡點(diǎn)索引 j∈[1,Ni],相機(jī)索引 k∈[1,R],RGB圖像 I,軌跡點(diǎn) P 和目標(biāo)停車位 S。重新組織數(shù)據(jù)集為:

d6f5f6c2-bc30-11ef-8732-92fbcf53809c.png

d70c67ea-bc30-11ef-8732-92fbcf53809c.png

其中 Q 表示預(yù)測(cè)軌跡點(diǎn)的長(zhǎng)度,R 表示 RGB 相機(jī)的數(shù)量。端到端網(wǎng)絡(luò)的優(yōu)化目標(biāo)如下:

d714f20c-bc30-11ef-8732-92fbcf53809c.png

其中 L 表示損失函數(shù)。

以 RGB 圖像和目標(biāo)停車位作為輸入。所提出的神經(jīng)網(wǎng)絡(luò)包括兩個(gè)主要部分:輸入編碼器和自回歸軌跡解碼器。通過輸入 RGB 圖像和目標(biāo)停車位,將 RGB 圖像轉(zhuǎn)換為 BEV 特征。然后,神經(jīng)網(wǎng)絡(luò)將 BEV 特征與目標(biāo)停車位融合,并使用 Transformer 解碼器以自回歸方式生成下一個(gè)軌跡點(diǎn)。

d72075be-bc30-11ef-8732-92fbcf53809c.png

圖片來源:《ParkingE2E: Camera-based End-to-end Parking Network from Images to Planning》

多視角 RGB 圖像被處理,圖像特征被轉(zhuǎn)換為 BEV(鳥瞰圖)表示形式。使用目標(biāo)停車位生成 BEV 目標(biāo)特征,通過目標(biāo)查詢將目標(biāo)特征和圖像 BEV 特征融合,然后使用自回歸的 Transformer 解碼器逐個(gè)獲得預(yù)測(cè)的軌跡點(diǎn)。

d73744b0-bc30-11ef-8732-92fbcf53809c.png

圖片來源:《ParkingE2E: Camera-based End-to-end Parking Network from Images to Planning》

在 BEV 視圖下對(duì)輸入進(jìn)行編碼。BEV 表示提供了車輛周圍環(huán)境的俯視圖,允許自車檢測(cè)停車位、障礙物和標(biāo)記。同時(shí),BEV 視圖提供了不同駕駛視角下一致的視點(diǎn)表示,從而簡(jiǎn)化了軌跡預(yù)測(cè)的復(fù)雜性。

相機(jī)編碼器:在 BEV 生成流程的開始,骨干網(wǎng)使用 EfficientNet 從 RGB 輸入中提取圖像特征

d75453b6-bc30-11ef-8732-92fbcf53809c.png

各個(gè)尺寸EfficientNet性能對(duì)比

d7697b6a-bc30-11ef-8732-92fbcf53809c.png

圖片來源:網(wǎng)絡(luò)

上圖是各個(gè)尺寸EfficientNet性能對(duì)比,最高性能是6600萬(wàn)參數(shù),準(zhǔn)確率84.3%,不過1200萬(wàn)參數(shù)也達(dá)到了81.6%,這也說明CNN并不適合Scaling Law,此外CNN模型參數(shù)少,并不意味著計(jì)算量就一定低。

LSS算法

d79a6036-bc30-11ef-8732-92fbcf53809c.png

圖片來源:英偉達(dá)

受英偉達(dá)LSS啟發(fā),學(xué)習(xí)圖像特征的深度分布,LSS是英偉達(dá)2020年提出的一種經(jīng)典的自下而上的構(gòu)建BEV特征的3D目標(biāo)檢測(cè)算法,通過將圖像特征反投影到3D空間生成偽視錐點(diǎn)云,通過EfficientNet算法提取云點(diǎn)的深度特征和圖像特征并對(duì)深度信息進(jìn)行估計(jì),最終將點(diǎn)云特征轉(zhuǎn)換到BEV空間下進(jìn)行特征融合和后續(xù)的語(yǔ)義分割任務(wù)。也是國(guó)內(nèi)最常見的BEV算法,典型代表就是地平線。

d7bf858c-bc30-11ef-8732-92fbcf53809c.png

并將每個(gè)像素提升到 3D 空間。

然后,將預(yù)測(cè)的深度分布ddep與圖像特征Fimg相乘,以獲得具有深度信息的圖像特征。通過相機(jī)的外部和內(nèi)部參數(shù),將圖像特征投影到 BEV 體素網(wǎng)格中,生成相機(jī)特征。

d7dd010c-bc30-11ef-8732-92fbcf53809c.png

為了將目標(biāo)停車位與相機(jī)特征 Fcam 對(duì)齊,根據(jù)指定的停車位位置在 BEV 空間生成目標(biāo)熱圖作為目標(biāo)編碼器的輸入。隨后,使用深度 CNN 神經(jīng)網(wǎng)絡(luò)提取目標(biāo)停車位特征 Ftarget 以獲得與 Fcam相同的維度。在訓(xùn)練期間,目標(biāo)停車位由人類駕駛軌跡的終點(diǎn)確定。通過在 BEV 空間對(duì)齊相機(jī)特征 Fcam和目標(biāo)編碼特征 Ftarget ,并使用目標(biāo)特征通過交叉注意力機(jī)制查詢相機(jī)特征,可以有效地融合兩種模態(tài)。位置編碼確保了在將特定 BEV 位置的特征關(guān)聯(lián)時(shí),相機(jī)特征和目標(biāo)特征之間的空間對(duì)應(yīng)關(guān)系得以保持。使用 Ftarget 作為查詢,相機(jī)特征 Fcam 作為Key和Value,并采用注意力機(jī)制,獲得融合特征 Ffuse。

編碼器方面,軌跡序列化將軌跡點(diǎn)表示為離散標(biāo)記。通過序列化軌跡點(diǎn),位置回歸可以轉(zhuǎn)換為標(biāo)記預(yù)測(cè)。隨后利用 Transformer 解碼器以自回歸方式預(yù)測(cè)軌跡。BEV 特征作為Key和Value,而序列化序列作為查詢,使用 Transformer 解碼器以自回歸方式生成軌跡點(diǎn)。在訓(xùn)練期間,在序列點(diǎn)中添加位置嵌入,并通過掩碼未知信息來實(shí)現(xiàn)并行化。在推理過程中,給定 BOS 做開始標(biāo)記,然后 Transformer 解碼器按順序預(yù)測(cè)后續(xù)點(diǎn)。然后將預(yù)測(cè)的點(diǎn)追加到序列中,重復(fù)此過程直到遇到 EOS終止標(biāo)記或達(dá)到指定的預(yù)測(cè)點(diǎn)數(shù)。

控制過程中,以 t0 表示停車開始時(shí)刻,使用端到端神經(jīng)規(guī)劃器基于當(dāng)前時(shí)刻 t0 到當(dāng)前時(shí)刻 t 的相對(duì)姿態(tài) egot0→t 來預(yù)測(cè)路徑 Tt0=Nθ′(It0,S)。目標(biāo)轉(zhuǎn)向角 Atar可以通過后輪反饋(RWF)方法獲得,表達(dá)式如下:

d7ee02e0-bc30-11ef-8732-92fbcf53809c.png

根據(jù)來自底盤的速度反饋 Vfeed 和轉(zhuǎn)向反饋 Afeed,以及設(shè)置的目標(biāo)速度 Vtar 和計(jì)算出的目標(biāo)轉(zhuǎn)向 Atar,使用級(jí)聯(lián) PID 控制器實(shí)現(xiàn)橫向和縱向控制。生成新的預(yù)測(cè)軌跡后,Tt0 和 egot0→t被重置,消除了在整個(gè)車輛控制過程中依賴全局定位的必要性。

d80026aa-bc30-11ef-8732-92fbcf53809c.png

作者設(shè)置了四種不同類型的停車場(chǎng)作為測(cè)試和訓(xùn)練,有室內(nèi),有全開放,有兩側(cè)和單側(cè)。

d8372db2-bc30-11ef-8732-92fbcf53809c.png

圖片來源:網(wǎng)絡(luò)

通過在RViz界面軟件中使用“2D-Nav-Goal”來選擇目標(biāo)停車位,如上圖,每次只能選一個(gè)。靠IMU獲取起始位姿,將以起始點(diǎn)為原點(diǎn)的世界坐標(biāo)轉(zhuǎn)化為車輛坐標(biāo)。模型接收來自環(huán)視攝像頭的當(dāng)前圖像和目標(biāo)停車位,以自回歸方式預(yù)測(cè)后續(xù)n個(gè)軌跡點(diǎn)的位置。將預(yù)測(cè)的軌跡序列發(fā)布到 RViz 進(jìn)行可視化顯示,讓用戶更直觀看到泊車過程,為用戶增加信心??刂破鞲鶕?jù)路徑規(guī)劃結(jié)果、自車姿態(tài)和反饋信號(hào)來操控車輛,將車輛停放到指定的停車位中。值得注意的是,目標(biāo)點(diǎn)和預(yù)測(cè)軌跡點(diǎn)的坐標(biāo)在車輛坐標(biāo)系中表示,確保軌跡序列和BEV特征在一致的坐標(biāo)基礎(chǔ)上表達(dá)。這種設(shè)計(jì)還使整個(gè)系統(tǒng)獨(dú)立于全局坐標(biāo)系。

關(guān)于神經(jīng)網(wǎng)絡(luò)的細(xì)節(jié),BEV特征的大小為200×200,對(duì)應(yīng)實(shí)際空間范圍x∈[?10m, 10m], y∈[?10m, 10m],分辨率為0.1米。在Transformer解碼器中,軌跡序列化的最大值Nt為1200。軌跡解碼器生成長(zhǎng)度為30的預(yù)測(cè)序列,實(shí)現(xiàn)了推理精度和速度的最佳平衡。使用PyTorch框架,神經(jīng)網(wǎng)絡(luò)在NVIDIA GeForce RTX 4090 GPU上訓(xùn)練,batch size為16,總共訓(xùn)練時(shí)間約為8小時(shí),使用了40,000幀數(shù)據(jù)。測(cè)試數(shù)據(jù)包括大約5,000幀。

d85f6d40-bc30-11ef-8732-92fbcf53809c.png

測(cè)試結(jié)果如上,L2距離(L2 Dis.)指的是預(yù)測(cè)軌跡和真實(shí)軌跡航點(diǎn)之間的平均歐幾里得距離。這個(gè)指標(biāo)評(píng)估模型推理的精確度和準(zhǔn)確性。Hausdorff距離(Haus. Dis.)指的是兩個(gè)點(diǎn)集之間的最小距離的最大值。這個(gè)指標(biāo)從點(diǎn)集的角度評(píng)估預(yù)測(cè)軌跡與真實(shí)軌跡的匹配程度。傅里葉描述符差異(Four. Diff.)可以用來測(cè)量軌跡之間的差異,值越低表示軌跡之間的差異越小。這個(gè)指標(biāo)使用一定數(shù)量的傅里葉描述符將實(shí)際和預(yù)測(cè)軌跡表示為向量。

d86cccb0-bc30-11ef-8732-92fbcf53809c.png

停車成功率(PSR)描述的是自車成功停放在目標(biāo)停車位的概率。

無(wú)車位率(NSR)未能在指定停車位停放的失敗率。

停車違規(guī)率(PVR)指的是車輛輕微超出指定停車位但沒有阻礙或妨礙相鄰?fù)\囄坏那闆r。

平均位置誤差(APE)是自車成功停放時(shí)目標(biāo)停車位置與自車停止位置之間的平均距離。

平均方向誤差(AOE)是自車成功停放時(shí)目標(biāo)停車方向與自車停止方向之間的平均差異。

平均停車得分(APS)是通過綜合評(píng)估停車過程中的位置誤差、方向誤差和成功率來計(jì)算的。得分在0到100之間分布。

這個(gè)試驗(yàn)有個(gè)缺點(diǎn),那就是停車位的尋找可能會(huì)影響自動(dòng)泊車。在RViz上,停車位只是一個(gè)坐標(biāo)點(diǎn)。但在真實(shí)場(chǎng)景中,停車位可能不是一個(gè)清晰的坐標(biāo)點(diǎn),超聲波雷達(dá)或視覺找到停車位,需要確定幾何中心為關(guān)鍵坐標(biāo)點(diǎn),這個(gè)需要全局定位。而這種端到端自動(dòng)泊車似乎很難做全局定位,特別是地下停車場(chǎng)。

端到端和傳統(tǒng)算法比,地下停車場(chǎng)和雙側(cè)停車場(chǎng)仍然是難點(diǎn),違規(guī)率超過了50%,這完全無(wú)法接受,這也表明純粹端到端很難應(yīng)用,必須添加人工規(guī)則,單側(cè)停車場(chǎng)表現(xiàn)還不錯(cuò)。純粹從算力和存儲(chǔ)帶寬看,自動(dòng)泊車領(lǐng)域用端到端沒有難度。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 自動(dòng)泊車
    +關(guān)注

    關(guān)注

    0

    文章

    105

    瀏覽量

    14016
  • 自動(dòng)駕駛
    +關(guān)注

    關(guān)注

    788

    文章

    14302

    瀏覽量

    170480

原文標(biāo)題:端到端在自動(dòng)泊車的應(yīng)用

文章出處:【微信號(hào):zuosiqiche,微信公眾號(hào):佐思汽車研究】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    特斯拉帶火“”智駕,國(guó)內(nèi)車企加速上車

    2024年1月,特斯拉開始大規(guī)模推送FSD V12,從此“”智能駕駛汽車行業(yè)興起。小鵬、理想、智已、商湯等公司也紛紛推出自家的
    的頭像 發(fā)表于 12-02 08:45 ?2935次閱讀
    特斯拉帶火“<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>”智駕,國(guó)內(nèi)車企加速上車

    Nullmax自動(dòng)駕駛最新研究成果入選ICCV 2025

    近日,國(guó)際計(jì)算機(jī)視覺大會(huì) ICCV 2025 正式公布論文錄用結(jié)果,Nullmax 感知團(tuán)隊(duì)自動(dòng)駕駛方向的最新研究成果《HiP-AD
    的頭像 發(fā)表于 07-05 15:40 ?347次閱讀
    Nullmax<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>自動(dòng)</b>駕駛最新研究成果入選ICCV 2025

    為什么自動(dòng)駕駛大模型有黑盒特性?

    [首發(fā)于智駕最前沿微信公眾號(hào)]隨著自動(dòng)駕駛技術(shù)落地,(End-to-End)大模型也成為行業(yè)研究與應(yīng)用的熱門方向。相較于傳統(tǒng)自動(dòng)駕駛系
    的頭像 發(fā)表于 07-04 16:50 ?189次閱讀
    為什么<b class='flag-5'>自動(dòng)</b>駕駛<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>大模型有黑盒特性?

    數(shù)據(jù)標(biāo)注方案自動(dòng)駕駛領(lǐng)域的應(yīng)用優(yōu)勢(shì)

    10-20TB,其中需要標(biāo)注的數(shù)據(jù)占比超過60%。在這樣的背景下,數(shù)據(jù)標(biāo)注方案應(yīng)運(yùn)而生,正在重塑自動(dòng)駕駛的數(shù)據(jù)生產(chǎn)范式。
    的頭像 發(fā)表于 06-23 17:27 ?209次閱讀

    一文帶你厘清自動(dòng)駕駛架構(gòu)差異

    [首發(fā)于智駕最前沿微信公眾號(hào)]隨著自動(dòng)駕駛技術(shù)飛速發(fā)展,智能駕駛系統(tǒng)的設(shè)計(jì)思路也經(jīng)歷了從傳統(tǒng)模塊化架構(gòu)大模型轉(zhuǎn)變。傳統(tǒng)模塊化架構(gòu)將感
    的頭像 發(fā)表于 05-08 09:07 ?275次閱讀
    一文帶你厘清<b class='flag-5'>自動(dòng)</b>駕駛<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>架構(gòu)差異

    自動(dòng)駕駛中基于規(guī)則的決策和大模型有何區(qū)別?

    自動(dòng)駕駛架構(gòu)的選擇上,也經(jīng)歷了從感知、決策控制、執(zhí)行的三段式架構(gòu)到現(xiàn)在火熱的大模型,尤其是
    的頭像 發(fā)表于 04-13 09:38 ?2879次閱讀
    <b class='flag-5'>自動(dòng)</b>駕駛中基于規(guī)則的決策和<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>大模型有何區(qū)別?

    東風(fēng)汽車推出自動(dòng)駕駛開源數(shù)據(jù)集

    近日,智能網(wǎng)聯(lián)汽車智駕數(shù)據(jù)空間構(gòu)建研討會(huì)暨中汽協(xié)會(huì)智能網(wǎng)聯(lián)汽車分會(huì)、數(shù)據(jù)分會(huì)2024年度會(huì)議在上海舉辦。會(huì)上,東風(fēng)汽車發(fā)布行業(yè)規(guī)模最大、涵蓋125萬(wàn)組高質(zhì)量數(shù)據(jù)的自動(dòng)駕駛開源數(shù)據(jù)
    的頭像 發(fā)表于 04-01 14:54 ?608次閱讀

    小米汽車智駕技術(shù)介紹

    后起之秀,小米宣布造車前被非常多的人質(zhì)疑,但在“真香”定律下,小米創(chuàng)下了很多友商所不能及的成就。作為科技企業(yè),小米也智能駕駛領(lǐng)域也不斷研發(fā)及突破,并推送了
    的頭像 發(fā)表于 03-31 18:17 ?3500次閱讀
    小米汽車<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>智駕技術(shù)介紹

    自動(dòng)駕駛技術(shù)研究與分析

    編者語(yǔ):「智駕最前沿」微信公眾號(hào)后臺(tái)回復(fù):C-0450,獲取本文參考報(bào)告:《自動(dòng)駕駛行業(yè)研究報(bào)告》pdf下載方式。 自動(dòng)駕駛進(jìn)入202
    的頭像 發(fā)表于 12-19 13:07 ?874次閱讀

    爆火的如何加速智駕落地?

    編者語(yǔ):「智駕最前沿」微信公眾號(hào)后臺(tái)回復(fù):C-0551,獲取本文參考報(bào)告:《智能汽車技術(shù)研究報(bào)告》pdf下載方式。 “
    的頭像 發(fā)表于 11-26 13:17 ?1124次閱讀
    爆火的<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>如何加速智駕落地?

    連接視覺語(yǔ)言大模型與自動(dòng)駕駛

    自動(dòng)駕駛大規(guī)模駕駛數(shù)據(jù)上訓(xùn)練,展現(xiàn)出很強(qiáng)的決策規(guī)劃能力,但是面對(duì)復(fù)雜罕見的駕駛場(chǎng)景,依然存在局限性,這是因?yàn)?/div>
    的頭像 發(fā)表于 11-07 15:15 ?691次閱讀
    連接視覺語(yǔ)言大模型與<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>自動(dòng)</b>駕駛

    Mobileye自動(dòng)駕駛解決方案的深度解析

    自動(dòng)駕駛技術(shù)正處于快速發(fā)展之中,各大科技公司和汽車制造商均在爭(zhēng)相布局,試圖在這個(gè)新興領(lǐng)域占據(jù)一席之地。Mobileye作為全球自動(dòng)駕駛技術(shù)的領(lǐng)軍企業(yè)之一,憑借其獨(dú)特的
    的頭像 發(fā)表于 10-17 09:35 ?826次閱讀
    Mobileye<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b><b class='flag-5'>自動(dòng)</b>駕駛解決方案的深度解析

    測(cè)試用例怎么寫

    編寫測(cè)試用例是確保軟件系統(tǒng)從頭到尾能夠正常工作的關(guān)鍵步驟。以下是一個(gè)詳細(xì)的指南,介紹如何編寫
    的頭像 發(fā)表于 09-20 10:29 ?955次閱讀

    實(shí)現(xiàn)自動(dòng)駕駛,唯有

    ,去年行業(yè)主流方案還是輕高精地圖城區(qū)智駕,今年大家的目標(biāo)都瞄到了(End-to-End, E2E)。
    的頭像 發(fā)表于 08-12 09:14 ?1503次閱讀
    實(shí)現(xiàn)<b class='flag-5'>自動(dòng)</b>駕駛,唯有<b class='flag-5'>端</b><b class='flag-5'>到</b><b class='flag-5'>端</b>?

    理想汽車加速自動(dòng)駕駛布局,成立“”實(shí)體組織

    近期,理想汽車在其智能駕駛領(lǐng)域邁出了重要一步,正式成立了專注于“自動(dòng)駕駛”的實(shí)體組織,該組織規(guī)模超過200人,標(biāo)志著理想在自動(dòng)駕駛技術(shù)
    的頭像 發(fā)表于 07-17 15:42 ?1606次閱讀