一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

什么是AI芯片?為什么需要AI芯片?

dKBf_eetop_1 ? 來源:未知 ? 作者:工程師黃明星 ? 2018-07-23 17:53 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

(1)性能與傳統(tǒng)芯片,比如CPU、GPU有很大的區(qū)別。在執(zhí)行AI算法時(shí),更快、更節(jié)能。

(2)工藝沒有區(qū)別,大家都一樣。至少目前來看,都一樣。

所謂的AI芯片,一般是指針對AI算法的ASIC(專用芯片)。

傳統(tǒng)的CPU、GPU都可以拿來執(zhí)行AI算法,但是速度慢,性能低,無法實(shí)際商用。

比如,自動駕駛需要識別道路行人紅綠燈等狀況,但是如果是當(dāng)前的CPU去算,那么估計(jì)車翻到河里了還沒發(fā)現(xiàn)前方是河,這是速度慢,時(shí)間就是生命。如果用GPU,的確速度要快得多,但是,功耗大,汽車的電池估計(jì)無法長時(shí)間支撐正常使用,而且,老黃家的GPU巨貴,經(jīng)常單塊上萬,普通消費(fèi)者也用不起,還經(jīng)常缺貨。另外,GPU因?yàn)椴皇菍iT針對AI算法開發(fā)的ASIC,所以,說到底,速度還沒到極限,還有提升空間。而類似智能駕駛這樣的領(lǐng)域,必須快!在手機(jī)終端,可以自行人臉識別、語音識別等AI應(yīng)用,這個(gè)必須功耗低,所以GPU OUT!

所以,開發(fā)ASIC就成了必然。

說說,為什么需要AI芯片。

AI算法,在圖像識別等領(lǐng)域,常用的是CNN卷積網(wǎng)絡(luò),語音識別、自然語言處理等領(lǐng)域,主要是RNN,這是兩類有區(qū)別的算法。但是,他們本質(zhì)上,都是矩陣或vector的乘法、加法,然后配合一些除法、指數(shù)等算法。

一個(gè)成熟的AI算法,比如YOLO-V3,就是大量的卷積、殘差網(wǎng)絡(luò)、全連接等類型的計(jì)算,本質(zhì)是乘法和加法。對于YOLO-V3來說,如果確定了具體的輸入圖形尺寸,那么總的乘法加法計(jì)算次數(shù)是確定的。比如一萬億次。(真實(shí)的情況比這個(gè)大得多的多)

那么要快速執(zhí)行一次YOLO-V3,就必須執(zhí)行完一萬億次的加法乘法次數(shù)。

這個(gè)時(shí)候就來看了,比如IBM的POWER8,最先進(jìn)的服務(wù)器用超標(biāo)量CPU之一,4GHz,SIMD,128bit,假設(shè)是處理16bit的數(shù)據(jù),那就是8個(gè)數(shù),那么一個(gè)周期,最多執(zhí)行8個(gè)乘加計(jì)算。一次最多執(zhí)行16個(gè)操作。這還是理論上,其實(shí)是不大可能的。

那么CPU一秒鐘的巔峰計(jì)算次數(shù)=16X4Gops=64Gops。

這樣,可以算算CPU計(jì)算一次的時(shí)間了。

同樣的,換成GPU算算,也能知道執(zhí)行時(shí)間。因?yàn)閷PU內(nèi)部結(jié)構(gòu)不熟,所以不做具體分析。

再來說說AI芯片。比如大名鼎鼎的谷歌的TPU1.

TPU1,大約700M Hz,有256X256尺寸的脈動陣列,如下圖所示。一共256X256=64K個(gè)乘加單元,每個(gè)單元一次可執(zhí)行一個(gè)乘法和一個(gè)加法。那就是128K個(gè)操作。(乘法算一個(gè),加法再算一個(gè))

什么是AI芯片?為什么需要AI芯片?

另外,除了脈動陣列,還有其他模塊,比如激活等,這些里面也有乘法、加法等。

所以,看看TPU1一秒鐘的巔峰計(jì)算次數(shù)至少是=128K X 700MHz=89600Gops=大約90Tops。

對比一下CPU與TPU1,會發(fā)現(xiàn)計(jì)算能力有幾個(gè)數(shù)量級的差距,這就是為啥說CPU慢。

當(dāng)然,以上的數(shù)據(jù)都是完全最理想的理論值,實(shí)際情況,能夠達(dá)到5%吧。因?yàn)?,芯片上的存儲不夠大,所以?shù)據(jù)會存儲在DRAM中,從DRAM取數(shù)據(jù)很慢的,所以,乘法邏輯往往要等待。另外,AI算法有許多層網(wǎng)絡(luò)組成,必須一層一層的算,所以,在切換層的時(shí)候,乘法邏輯又是休息的,所以,諸多因素造成了實(shí)際的芯片并不能達(dá)到利潤的計(jì)算峰值,而且差距還極大。

可能有人要說,搞研究慢一點(diǎn)也能將就用。

目前來看,神經(jīng)網(wǎng)絡(luò)的尺寸是越來越大,參數(shù)越來越多,遇到大型NN模型,訓(xùn)練需要花幾周甚至一兩個(gè)月的時(shí)候,你會耐心等待么?突然斷電,一切重來?(曾經(jīng)動手訓(xùn)練一個(gè)寫小說的AI,然后,一次訓(xùn)練(50輪)需要大約一天一夜還多,記得如果第一天早上開始訓(xùn)練,需要到第二天下午才可能完成,這還是模型比較簡單,數(shù)據(jù)只有幾萬條的小模型呀。)

修改了模型,需要幾個(gè)星期才能知道對錯(cuò),確定等得起?

突然有了TPU,然后你發(fā)現(xiàn),吃個(gè)午飯回來就好了,參數(shù)優(yōu)化一下,繼續(xù)跑,多么爽!

計(jì)算速度快,才能迅速反復(fù)迭代,研發(fā)出更強(qiáng)的AI模型。速度就是金錢。

GPU的內(nèi)核結(jié)構(gòu)不清楚,所以就不比較了??隙ǖ氖?,GPU還是比較快的,至少比CPU快得多,所以目前大多數(shù)都用GPU,這玩意隨便一個(gè)都能價(jià)格輕松上萬,太貴,而且,功耗高,經(jīng)常缺貨。不適合數(shù)據(jù)中心大量使用。

總的來說,CPU與GPU并不是AI專用芯片,為了實(shí)現(xiàn)其他功能,內(nèi)部有大量其他邏輯,而這些邏輯對于目前的AI算法來說是完全用不上的,所以,自然造成CPU與GPU并不能達(dá)到最優(yōu)的性價(jià)比。

谷歌花錢研發(fā)TPU,而且目前已經(jīng)出了TPU3,用得還挺歡,都開始支持谷歌云計(jì)算服務(wù)了,貌似6點(diǎn)幾美元每小時(shí)吧,不記得單位了,懶得查。

可見,谷歌覺得很有必要自己研發(fā)TPU。

目前在圖像識別、語音識別、自然語言處理等領(lǐng)域,精度最高的算法就是基于深度學(xué)習(xí)的,傳統(tǒng)的機(jī)器學(xué)習(xí)的計(jì)算精度已經(jīng)被超越,目前應(yīng)用最廣的算法,估計(jì)非深度學(xué)習(xí)莫屬,而且,傳統(tǒng)機(jī)器學(xué)習(xí)的計(jì)算量與 深度學(xué)習(xí)比起來少很多,所以,我討論AI芯片時(shí)就針對計(jì)算量特別大的深度學(xué)習(xí)而言。畢竟,計(jì)算量小的算法,說實(shí)話,CPU已經(jīng)很快了。而且,CPU適合執(zhí)行調(diào)度復(fù)雜的算法,這一點(diǎn)是GPU與AI芯片都做不到的,所以他們?nèi)咧皇轻槍Σ煌膽?yīng)用場景而已,都有各自的主場。

至于為何用了CPU做對比?

而沒有具體說GPU。是因?yàn)?,我說了,我目前沒有系統(tǒng)查看過GPU的論文,不了解GPU的情況,故不做分析。因?yàn)榉e累的緣故,比較熟悉超標(biāo)量CPU,所以就用熟悉的CPU做詳細(xì)比較。而且,小型的網(wǎng)絡(luò),完全可以用CPU去訓(xùn)練,沒啥大問題,最多慢一點(diǎn)。只要不是太大的網(wǎng)絡(luò)模型。

那些AI算法公司,比如曠世、商湯等,他們的模型很大,自然也不是一塊GPU就能搞定的。GPU的算力也是很有限的。

至于說CPU是串行,GPU是并行

沒錯(cuò),但是不全面。只說說CPU串行。這位網(wǎng)友估計(jì)對CPU沒有非常深入的理解。我的回答中舉的CPU是IBM的POWER8,百度一下就知道,這是超標(biāo)量的服務(wù)器用CPU,目前來看,性能已經(jīng)是非常頂級的了,主頻4GHZ。不知是否注意到我說了這是SIMD?這個(gè)SIMD,就代表他可以同時(shí)執(zhí)行多條同樣的指令,這就是并行,而不是串行。單個(gè)數(shù)據(jù)是128bit的,如果是16bit的精度,那么一周期理論上最多可以計(jì)算八組數(shù)據(jù)的乘法或加法,或者乘加。這還不叫并行?只是并行的程度沒有GPU那么厲害而已,但是,這也是并行。

不知道為啥就不能用CPU來比較算力?

有評論很推崇GPU。說用CPU來做比較,不合適。

拜托,GPU本來是從CPU中分離出來專門處理圖像計(jì)算的,也就是說,GPU是專門處理圖像計(jì)算的。包括各種特效的顯示。這也是GPU的天生的缺陷,GPU更加針對圖像的渲染等計(jì)算算法。但是,這些算法,與深度學(xué)習(xí)的算法還是有比較大的區(qū)別,而我的回答里提到的AI芯片,比如TPU,這個(gè)是專門針對CNN等典型深度學(xué)習(xí)算法而開發(fā)的。另外,寒武紀(jì)的NPU,也是專門針對神經(jīng)網(wǎng)絡(luò)的,與TPU類似。

谷歌的TPU,寒武紀(jì)的DianNao,這些AI芯片剛出道的時(shí)候,就是用CPU/GPU來對比的。

看看,谷歌TPU論文的摘要直接對比了TPU1與CPU/GPU的性能比較結(jié)果,見紅色框:

這就是摘要中介紹的TPU1與CPU/GPU的性能對比。

再來看看寒武紀(jì)DianNao的paper,摘要中直接就是DianNao與CPU的性能的比較,見紅色框:

回顧一下歷史

上個(gè)世紀(jì)出現(xiàn)神經(jīng)網(wǎng)絡(luò)的時(shí)候,那一定是用CPU計(jì)算的。

比特幣剛出來,那也是用CPU在挖。目前已經(jīng)進(jìn)化成ASIC礦機(jī)了。比特大陸了解一下。

從2006年開始開啟的深度學(xué)習(xí)熱潮,CPU與GPU都能計(jì)算,發(fā)現(xiàn)GPU速度更快,但是貴啊,更多用的是CPU,而且,那時(shí)候GPU的CUDA可還不怎么樣,后來,隨著NN模型越來越大,GPU的優(yōu)勢越來越明顯,CUDA也越來越6,目前就成了GPU的專場。

寒武紀(jì)2014年的DianNao(NPU)比CPU快,而且更加節(jié)能。ASIC的優(yōu)勢很明顯啊。這也是為啥要開發(fā)ASIC的理由。

至于說很多公司的方案是可編程的,也就是大多數(shù)與FPGA配合。你說的是商湯、深鑒么?的確,他們發(fā)表的論文,就是基于FPGA的。

這些創(chuàng)業(yè)公司,他們更多研究的是算法,至于芯片,還不是重點(diǎn),另外,他們暫時(shí)還沒有那個(gè)精力與實(shí)力。FPGA非常靈活,成本不高,可以很快實(shí)現(xiàn)架構(gòu)設(shè)計(jì)原型,所以他們自然會選擇基于FPGA的方案。不過,最近他們都大力融資,官網(wǎng)也在招聘芯片設(shè)計(jì)崗位,所以,應(yīng)該也在涉足ASIC研發(fā)了。

如果以FPGA為代表的可編程方案真的有巨大的商業(yè)價(jià)值,那他們何必砸錢去做ASIC?

說了這么多,我也是半路出家的,因?yàn)楣ぷ餍枰鴮W(xué)習(xí)的。按照我目前的理解,看TPU1的專利及論文,一步一步推導(dǎo)出內(nèi)部的設(shè)計(jì)方法,理解了TPU1,大概就知道了所謂的AI處理器的大部分。然后研究研究寒武紀(jì)的一系列論文,有好幾種不同的架構(gòu)用于不同的情況,有興趣可以研究一下。然后就是另外幾個(gè)獨(dú)角獸,比如商湯、深鑒科技等,他們每年都會有論文發(fā)表,沒事去看看。這些論文,大概就代表了當(dāng)前最先進(jìn)的AI芯片的架構(gòu)設(shè)計(jì)了。當(dāng)然,最先進(jìn),別人肯定不會公開,比如谷歌就不曾公開關(guān)于TPU2和TPU3的相關(guān)專利,反正我沒查到。不過,沒事,目前的文獻(xiàn)已經(jīng)代表了最近幾年最先進(jìn)的進(jìn)展了。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 芯片
    +關(guān)注

    關(guān)注

    460

    文章

    52505

    瀏覽量

    440826
  • cpu
    cpu
    +關(guān)注

    關(guān)注

    68

    文章

    11080

    瀏覽量

    217062
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    35136

    瀏覽量

    279795

原文標(biāo)題:AI 芯片和傳統(tǒng)芯片有何區(qū)別?

文章出處:【微信號:eetop-1,微信公眾號:EETOP】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    AI芯片:加速人工智能計(jì)算的專用硬件引擎

    處理等應(yīng)用落地的關(guān)鍵硬件基礎(chǔ)。 ? AI芯片的核心技術(shù)特點(diǎn) ? ? AI芯片的設(shè)計(jì)重點(diǎn)在于提升計(jì)算效率,主要技術(shù)特點(diǎn)包括: ? 1. ? 并行計(jì)算架構(gòu) ?:
    的頭像 發(fā)表于 07-09 15:59 ?142次閱讀

    首創(chuàng)開源架構(gòu),天璣AI開發(fā)套件讓端側(cè)AI模型接入得心應(yīng)手

    科正將AI能力體系化并賦能終端生態(tài)。 大會上,聯(lián)發(fā)科定義了“智能體化用戶體驗(yàn)”的五大特征:主動及時(shí)、知你懂你、互動協(xié)作、學(xué)習(xí)進(jìn)化和專屬隱私信息守護(hù)。這五大特征需要跨越從芯片、模型、應(yīng)用、終端乃至整個(gè)
    發(fā)表于 04-13 19:52

    **【技術(shù)干貨】Nordic nRF54系列芯片:傳感器數(shù)據(jù)采集與AI機(jī)器學(xué)習(xí)的完美結(jié)合**

    【技術(shù)干貨】nRF54系列芯片:傳感器數(shù)據(jù)采集與AI機(jī)器學(xué)習(xí)的完美結(jié)合 近期收到不少伙伴咨詢nRF54系列芯片的應(yīng)用與技術(shù)細(xì)節(jié),今天我們整理幾個(gè)核心問題與解答,帶你快速掌握如何在nRF54上部署
    發(fā)表于 04-01 00:00

    科通技術(shù)推出DeepSeek+AI芯片全場景方案

    2025年,隨著DeepSeek新版本的開源,AI技術(shù)掀起了全球普及的浪潮。在這股浪潮中,AI芯片作為關(guān)鍵算力支撐,其應(yīng)用場景不斷拓展,從云端到本地,再到終端設(shè)備,AI
    的頭像 發(fā)表于 03-24 10:33 ?678次閱讀

    EVASH芯片公司接入DeepSeek:AI驅(qū)動的芯片設(shè)計(jì)革新

    EVASH芯片公司接入DeepSeek:AI驅(qū)動的芯片設(shè)計(jì)革新
    的頭像 發(fā)表于 03-03 17:45 ?461次閱讀

    AI芯片:科技變革的核心驅(qū)動力

    近年來,人工智能(AI)的飛速發(fā)展對眾多行業(yè)產(chǎn)生了深遠(yuǎn)影響,芯片領(lǐng)域也不例外。AI芯片設(shè)計(jì)、制造及應(yīng)用等方面帶來了革新性的改變,成為推動芯片
    的頭像 發(fā)表于 02-18 17:45 ?569次閱讀

    AI芯片上的應(yīng)用:革新設(shè)計(jì)與功能

    AI芯片上的應(yīng)用正在深刻改變著芯片設(shè)計(jì)、制造和應(yīng)用的全過程。未來,隨著AI技術(shù)的不斷進(jìn)步和應(yīng)用場景的不斷拓展,AI
    的頭像 發(fā)表于 02-17 16:09 ?585次閱讀

    聚焦AI芯片,角逐芯未來

    國產(chǎn)AI芯片規(guī)模壯大 在科技高速發(fā)展的今天,算力已成為驅(qū)動行業(yè)創(chuàng)新與變革的核心引擎。中信證券發(fā)布的最新研報(bào),聚焦于國產(chǎn)AI芯片市場的蓬勃發(fā)展態(tài)勢,揭示了該領(lǐng)域即將迎來的重大機(jī)遇。 報(bào)告
    的頭像 發(fā)表于 01-08 09:10 ?572次閱讀

    一顆光譜芯片AI輝光

    讓光譜技術(shù)走進(jìn)消費(fèi)級市場,AI究竟對一枚芯片做了什么
    的頭像 發(fā)表于 01-05 10:56 ?2821次閱讀
    一顆光譜<b class='flag-5'>芯片</b>的<b class='flag-5'>AI</b>輝光

    SPEA創(chuàng)新實(shí)踐:AI芯片混合信號測試儀

    芯片是人工智能(AI)應(yīng)用的支柱,為從自動駕駛汽車到虛擬助手等各類應(yīng)用提供著核心動力。AI芯片專門設(shè)計(jì)用于處理海量數(shù)據(jù),并能實(shí)時(shí)做出決策,因此它們對于確保最終應(yīng)用的成功發(fā)揮著至關(guān)重要的
    的頭像 發(fā)表于 01-03 11:44 ?828次閱讀
    SPEA創(chuàng)新實(shí)踐:<b class='flag-5'>AI</b><b class='flag-5'>芯片</b>混合信號測試儀

    恒玄科技研發(fā)AI眼鏡專用芯片

    近日,知情人士透露,國內(nèi)領(lǐng)先的芯片設(shè)計(jì)公司恒玄科技目前正致力于研發(fā)一款專門適配于AI眼鏡的芯片。 據(jù)了解,目前市場上的AI眼鏡產(chǎn)品主要搭載的是高通AR1和紫光展銳W517等
    的頭像 發(fā)表于 12-31 14:42 ?1766次閱讀

    亞馬遜轉(zhuǎn)向Trainium芯片,全力投入AI模型訓(xùn)練

    近日,亞馬遜宣布了一項(xiàng)重大決策,決定停止Inferentia AI芯片的開發(fā),轉(zhuǎn)而將全部精力投入到Trainium芯片的研發(fā)上,以此作為與英偉達(dá)競爭的新策略。 自2018年進(jìn)軍AI
    的頭像 發(fā)表于 12-13 14:14 ?641次閱讀

    Untether發(fā)布人工智能(AI)芯片

    初創(chuàng)企業(yè)Untether發(fā)布了一款專為汽車、農(nóng)業(yè)裝備及極端環(huán)境AI應(yīng)用設(shè)計(jì)的人工智能(AI芯片。   相較于英偉達(dá)和AMD的旗艦AI芯片
    的頭像 發(fā)表于 10-29 13:59 ?831次閱讀

    如今火熱的AI芯片到底是什么

    眾所周知,人工智能的三大基礎(chǔ)要素是數(shù)據(jù)、算法和算力,而這三大要素的核心就是AI芯片技術(shù)。隨著各項(xiàng)基于AIGC前沿科技的廣泛應(yīng)用,AI對于算力的要求開始不斷地快速攀升。特別是深度學(xué)習(xí)成為當(dāng)前AI
    的頭像 發(fā)表于 09-06 10:10 ?1545次閱讀

    AI芯片的混合精度計(jì)算與靈活可擴(kuò)展

    電子發(fā)燒友網(wǎng)報(bào)道(文/李彎彎)當(dāng)前,AI技術(shù)和應(yīng)用蓬勃發(fā)展,其中離不開AI芯片的支持。AI芯片是一個(gè)復(fù)雜而多樣的領(lǐng)域,根據(jù)其設(shè)計(jì)目標(biāo)和應(yīng)用場
    的頭像 發(fā)表于 08-23 00:08 ?5921次閱讀