一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

使用TensorFlow框架演示了卷積神經(jīng)網(wǎng)絡在MNIST數(shù)據(jù)集上的應用

zhKF_jqr_AI ? 來源:未知 ? 作者:李倩 ? 2018-08-27 09:34 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

Google產(chǎn)品分析Zlatan Kremonic介紹了卷積神經(jīng)網(wǎng)絡的機制,并使用TensorFlow框架演示了卷積神經(jīng)網(wǎng)絡在MNIST數(shù)據(jù)集上的應用。

卷積神經(jīng)網(wǎng)絡(CNN)是一種前饋人工神經(jīng)網(wǎng)絡,其神經(jīng)元連接模擬了動物的視皮層。在圖像分類之類的計算機視覺任務中,CNN特別有用;不過,CNN也可以應用于其他機器學習任務,只要該任務中至少一維上的屬性的順序?qū)Ψ诸惗允潜夭豢缮俚?。例如,CNN也用于自然語言處理和音頻分析。

CNN的主要組成部分是卷積層(convolutional layer)、池化層(pooling layer)、ReLU層(ReLU layer)、全連接層(fully connected layer)。

圖片來源:learnopencv.com

卷積層

卷積層從原輸入的三維版本開始,一般是包括色彩、寬度、高度三維的圖像。接著,圖像被分解為過濾器(核)的子集,每個過濾器的感受野均小于圖像總體。這些過濾器接著沿著輸入量的寬高應用卷積,計算過濾器項和輸入的點積,并生成過濾器的二維激活映射。這使得網(wǎng)絡學習因為偵測到輸入的空間位置上特定種類的特征而激活的過濾器。過濾器沿著整個圖像進行“掃描”,這讓CNN具有平移不變性,也就是說,CNN可以處理位于圖像不同部分的物體。

接著疊加激活函數(shù),這構成卷積層輸出的深度。輸出量中的每一項因此可以視作查看輸入的一小部分的神經(jīng)元的輸出,同一激活映射中的神經(jīng)元共享參數(shù)。

卷積層的一個關鍵概念是局部連通性,每個神經(jīng)元僅僅連接到輸入量中的一小部分。過濾器的尺寸,也稱為感受野,是決定連通程度的關鍵因素。

其他關鍵參數(shù)是深度、步長、補齊。深度表示創(chuàng)建的特征映射數(shù)目。步長控制每個卷積核在圖像上移動的步幅。一般將步長設為1,從而導向高度重疊的感受野和較大的輸出量。補齊讓我們可以控制輸出量的空間大小。如果我們用零補齊(zero-padding),它能提供和輸入量等高等寬的輸出。

圖片來源:gabormelli.com

池化層

池化是一種非線性下采樣的形式,讓我們可以在保留最重要的特征的同時削減卷積輸出。最常見的池化方法是最大池化,將輸入圖像(這里是卷積層的激活映射)分區(qū)(無重疊的矩形),然后每區(qū)取最大值。

池化的關鍵優(yōu)勢之一是降低參數(shù)數(shù)量和網(wǎng)絡的計算量,從而緩解過擬合。此外,由于池化去除了特定特征的精確位置的信息,但保留了該特征相對其他特征的位置信息,結果也提供了平移不變性。

最常見的池化大小是2 x 2(步長2),也就是從輸入映射中去除75%的激活。

圖片來源:Leonardo Araujo dos Santos

ReLU層

修正線性單元(Rectifier Linear Unit)層應用如下激活函數(shù)

至池化層的輸出。它在不影響卷積層的感受野的前提下增加了整個網(wǎng)絡的非線性。當然,我們也可以應用其他標準的非線性激活函數(shù),例如tanh和sigmoid。

圖片來源:hashrocket.com

全連接層

獲取ReLU層的輸出,將其扁平化為單一向量,以便調(diào)節(jié)權重。

圖片來源:machinethink.net

使用TensorFlow在MNIST數(shù)據(jù)集上訓練CNN

下面我們將展示如何在MNIST數(shù)據(jù)集上使用TensorFlow訓練CNN,并達到接近99%的精確度。

首先導入需要的庫:

import numpy as np

import tensorflow as tf

import matplotlib.pyplot as plt

import pandas as pd

import os

from datetime import datetime

from sklearn.utils import shuffle

編寫提供錯誤率和預測響應矩陣的基本輔助函數(shù):

def y2indicator(y):

N = len(y)

y = y.astype(np.int32)

ind = np.zeros((N, 10))

for i in range(N):

ind[i, y[i]] = 1

return ind

def error_rate(p, t):

return np.mean(p != t)

接下來,我們加載數(shù)據(jù),歸一化并重整數(shù)據(jù),并生成訓練集和測試集。

data = pd.read_csv(os.path.join('Data', 'train.csv'))

def get_normalized_data(data):

data = data.as_matrix().astype(np.float32)

np.random.shuffle(data)

X = data[:, 1:]

mu = X.mean(axis=0)

std = X.std(axis=0)

np.place(std, std == 0, 1)

X = (X - mu) / std

Y = data[:, 0]

return X, Y

X, Y = get_normalized_data(data)

X = X.reshape(len(X), 28, 28, 1)

X = X.astype(np.float32)

Xtrain = X[:-1000,]

Ytrain = Y[:-1000]

Xtest = X[-1000:,]

Ytest = Y[-1000:]

Ytrain_ind = y2indicator(Ytrain)

Ytest_ind = y2indicator(Ytest)

在我們的卷積函數(shù)中,我們?nèi)〔介L為一,并通過設定padding為SAME確保卷積輸出的維度和輸入的維度相等。下采樣系數(shù)為二,在輸出上應用ReLU激活函數(shù):

def convpool(X, W, b):

conv_out = tf.nn.conv2d(X, W, strides=[1, 1, 1, 1], padding='SAME')

conv_out = tf.nn.bias_add(conv_out, b)

pool_out = tf.nn.max_pool(conv_out, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

return tf.nn.relu(pool_out)

初始化權重的方式是隨機正態(tài)分布取樣/sqrt(扇入+扇出)。這里的關鍵是隨機權重的方差受限于數(shù)據(jù)集大小。

def init_filter(shape, poolsz):

w = np.random.randn(*shape) / np.sqrt(np.prod(shape[:-1]) + shape[-1]*np.prod(shape[:-2] / np.prod(poolsz)))

return w.astype(np.float32)

我們定義梯度下降參數(shù),包括迭代數(shù),batch尺寸,隱藏層數(shù)量,分類數(shù)量,池尺寸。

max_iter = 6

print_period = 10

N = Xtrain.shape[0]

batch_sz = 500

n_batches = N / batch_sz

M = 500

K = 10

poolsz = (2, 2)

初始化過濾器,注意TensorFlow的維度順序。

W1_shape = (5, 5, 1, 20) # (filter_width, filter_height, num_color_channels, num_feature_maps)

W1_init = init_filter(W1_shape, poolsz)

b1_init = np.zeros(W1_shape[-1], dtype=np.float32) # one bias per output feature map

W2_shape = (5, 5, 20, 50) # (filter_width, filter_height, old_num_feature_maps, num_feature_maps)

W2_init = init_filter(W2_shape, poolsz)

b2_init = np.zeros(W2_shape[-1], dtype=np.float32)

W3_init = np.random.randn(W2_shape[-1]*7*7, M) / np.sqrt(W2_shape[-1]*7*7 + M)

b3_init = np.zeros(M, dtype=np.float32)

W4_init = np.random.randn(M, K) / np.sqrt(M + K)

b4_init = np.zeros(K, dtype=np.float32)

接著,我們定義輸入變量和目標變量,以及將在訓練過程中更新的變量:

X = tf.placeholder(tf.float32, shape=(batch_sz, 28, 28, 1), name='X')

T = tf.placeholder(tf.float32, shape=(batch_sz, K), name='T')

W1 = tf.Variable(W1_init.astype(np.float32))

b1 = tf.Variable(b1_init.astype(np.float32))

W2 = tf.Variable(W2_init.astype(np.float32))

b2 = tf.Variable(b2_init.astype(np.float32))

W3 = tf.Variable(W3_init.astype(np.float32))

b3 = tf.Variable(b3_init.astype(np.float32))

W4 = tf.Variable(W4_init.astype(np.float32))

b4 = tf.Variable(b4_init.astype(np.float32))

定義前向傳播過程,然后使用RMSProp加速梯度下降過程。

Z1 = convpool(X, W1, b1)

Z2 = convpool(Z1, W2, b2)

Z2_shape = Z2.get_shape().as_list()

Z2r = tf.reshape(Z2, [Z2_shape[0], np.prod(Z2_shape[1:])])

Z3 = tf.nn.relu( tf.matmul(Z2r, W3) + b3 )

Yish = tf.matmul(Z3, W4) + b4

cost = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits = Yish, labels = T))

train_op = tf.train.RMSPropOptimizer(0.0001, decay=0.99, momentum=0.9).minimize(cost)

# 用于計算錯誤率

predict_op = tf.argmax(Yish, 1)

我們使用標準的訓練過程,不過,當在測試集上做出預測時,由于RAM限制我們需要固定輸入尺寸;因此,我們加入的計算總代價和預測的函數(shù)稍微有點復雜。

t0 = datetime.now()

LL = []

init = tf.initialize_all_variables()

with tf.Session() as session:

session.run(init)

for i in range(int(max_iter)):

for j in range(int(n_batches)):

Xbatch = Xtrain[j*batch_sz:(j*batch_sz + batch_sz),]

Ybatch = Ytrain_ind[j*batch_sz:(j*batch_sz + batch_sz),]

if len(Xbatch) == batch_sz:

session.run(train_op, feed_dict={X: Xbatch, T: Ybatch})

if j % print_period == 0:

test_cost = 0

prediction = np.zeros(len(Xtest))

for k in range(int(len(Xtest) / batch_sz)):

Xtestbatch = Xtest[k*batch_sz:(k*batch_sz + batch_sz),]

Ytestbatch = Ytest_ind[k*batch_sz:(k*batch_sz + batch_sz),]

test_cost += session.run(cost, feed_dict={X: Xtestbatch, T: Ytestbatch})

prediction[k*batch_sz:(k*batch_sz + batch_sz)] = session.run(

predict_op, feed_dict={X: Xtestbatch})

err = error_rate(prediction, Ytest)

if j == 0:

print("Cost / err at iteration i=%d, j=%d: %.3f / %.3f" % (i, j, test_cost, err))

LL.append(test_cost)

print("Elapsed time:", (datetime.now() - t0))

plt.plot(LL)

plt.show()

輸出:

Cost / err at iteration i=0, j=0: 2243.417 / 0.805

Cost / err at iteration i=1, j=0: 116.821 / 0.035

Cost / err at iteration i=2, j=0: 78.144 / 0.029

Cost / err at iteration i=3, j=0: 57.462 / 0.018

Cost / err at iteration i=4, j=0: 52.477 / 0.015

Cost / err at iteration i=5, j=0: 48.527 / 0.018

Elapsed time: 0:09:16.157494

結語

如我們所見,模型在測試集上的表現(xiàn)在98%到99%之間。在這個練習中,我們沒有進行任何超參數(shù)調(diào)整,但這是很自然的下一步。我們也可以增加正則化、動量、dropout。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標題:卷積神經(jīng)網(wǎng)絡簡明教程

文章出處:【微信號:jqr_AI,微信公眾號:論智】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    神經(jīng)網(wǎng)絡壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計數(shù)據(jù)怎么查看?

    無法觀察神經(jīng)網(wǎng)絡壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計數(shù)據(jù)
    發(fā)表于 03-06 07:10

    BP神經(jīng)網(wǎng)絡卷積神經(jīng)網(wǎng)絡的比較

    多層。 每一層都由若干個神經(jīng)元構成,神經(jīng)元之間通過權重連接。信號神經(jīng)網(wǎng)絡中是前向傳播的,而誤差是反向傳播的。 卷積
    的頭像 發(fā)表于 02-12 15:53 ?665次閱讀

    人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法

    在上一篇文章中,我們介紹傳統(tǒng)機器學習的基礎知識和多種算法。本文中,我們會介紹人工神經(jīng)網(wǎng)絡的原理和多種神經(jīng)網(wǎng)絡架構方法,供各位老師選擇。 01 人工
    的頭像 發(fā)表于 01-09 10:24 ?1188次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡</b>架構方法

    《DNK210使用指南 -CanMV版 V1.0》第四十七章 MNIST實驗

    ,并分別構造并初始化了用于MNIST手寫數(shù)字識別的KPU對象。然后便是一個循環(huán)中不斷地獲取攝像頭輸出的圖像,在對圖像進行預處理后,將圖像送入卷積神經(jīng)網(wǎng)絡中進行計算和識別,最后將識別出
    發(fā)表于 11-19 10:30

    卷積神經(jīng)網(wǎng)絡的實現(xiàn)工具與框架

    卷積神經(jīng)網(wǎng)絡因其圖像和視頻處理任務中的卓越性能而廣受歡迎。隨著深度學習技術的快速發(fā)展,多種實現(xiàn)工具和框架應運而生,為研究人員和開發(fā)者提供
    的頭像 發(fā)表于 11-15 15:20 ?669次閱讀

    卷積神經(jīng)網(wǎng)絡的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡因其處理具有空間層次結構的數(shù)據(jù)時的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設置。參數(shù)調(diào)整是一個復雜的過程,涉及到多個超參數(shù)的選擇和優(yōu)化。
    的頭像 發(fā)表于 11-15 15:10 ?1206次閱讀

    使用卷積神經(jīng)網(wǎng)絡進行圖像分類的步驟

    使用卷積神經(jīng)網(wǎng)絡(CNN)進行圖像分類是一個涉及多個步驟的過程。 1. 問題定義 確定目標 :明確你想要分類的圖像類型,例如貓和狗、不同的植物種類等。 數(shù)據(jù)需求 :確定需要多少數(shù)據(jù)以及
    的頭像 發(fā)表于 11-15 15:01 ?844次閱讀

    卷積神經(jīng)網(wǎng)絡自然語言處理中的應用

    。 卷積神經(jīng)網(wǎng)絡的基本原理 卷積神經(jīng)網(wǎng)絡是一種前饋神經(jīng)網(wǎng)絡,它通過卷積層來提取輸入
    的頭像 發(fā)表于 11-15 14:58 ?803次閱讀

    卷積神經(jīng)網(wǎng)絡與傳統(tǒng)神經(jīng)網(wǎng)絡的比較

    深度學習領域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡是兩種常
    的頭像 發(fā)表于 11-15 14:53 ?1868次閱讀

    深度學習中的卷積神經(jīng)網(wǎng)絡模型

    深度學習近年來多個領域取得了顯著的進展,尤其是圖像識別、語音識別和自然語言處理等方面。卷積神經(jīng)網(wǎng)絡作為深度學習的一個分支,因其圖像處理
    的頭像 發(fā)表于 11-15 14:52 ?845次閱讀

    卷積神經(jīng)網(wǎng)絡的基本原理與算法

    ),是深度學習的代表算法之一。 一、基本原理 卷積運算 卷積運算是卷積神經(jīng)網(wǎng)絡的核心,用于提取圖像中的局部特征。 定義卷積核:
    的頭像 發(fā)表于 11-15 14:47 ?1776次閱讀

    關于卷積神經(jīng)網(wǎng)絡,這些概念你厘清了么~

    隨著人工智能(AI)技術的快速發(fā)展,AI可以越來越多地支持以前無法實現(xiàn)或者難以實現(xiàn)的應用。本文基于此解釋 卷積神經(jīng)網(wǎng)絡 (CNN)及其對人工智能和機器學習的意義。CNN是一種能夠從復雜數(shù)據(jù)
    發(fā)表于 10-24 13:56

    【飛凌嵌入式OK3576-C開發(fā)板體驗】RKNN神經(jīng)網(wǎng)絡算法開發(fā)環(huán)境搭建

    download_model.sh 腳本,該腳本 將下載一個可用的 YOLOv5 ONNX 模型,并存放在當前 model 目錄下,參考命令如下: 安裝COCO數(shù)據(jù),深度神經(jīng)網(wǎng)絡
    發(fā)表于 10-10 09:28

    國產(chǎn)芯運行TinyMaxi輕量級的神經(jīng)網(wǎng)絡推理庫-米爾基于芯馳D9國產(chǎn)商顯板

    本篇測評由優(yōu)秀測評者“短笛君”提供。本文將介紹基于米爾電子MYD-YD9360商顯板(米爾基于芯馳D9360國產(chǎn)開發(fā)板)的TinyMaxi輕量級的神經(jīng)網(wǎng)絡推理庫方案測試。 算力測試TinyMaix
    發(fā)表于 08-09 18:26

    國產(chǎn)芯運行TinyMaxi輕量級的神經(jīng)網(wǎng)絡推理庫-米爾基于芯馳D9國產(chǎn)商顯板

    D9360國產(chǎn)開發(fā)板)的TinyMaxi輕量級的神經(jīng)網(wǎng)絡推理庫方案測試。 算力測試 TinyMaix 是面向單片機的超輕量級的神經(jīng)網(wǎng)絡推理庫,即 TinyML 推理庫,可以讓你在任意單片機上運行輕量級深度
    發(fā)表于 08-07 18:06