一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀(guān)看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)算法概念介紹及選用建議

智能感知與物聯(lián)網(wǎng)技術(shù)研究所 ? 來(lái)源:cc ? 2019-01-14 13:49 ? 次閱讀

在從事數(shù)據(jù)科學(xué)工作的時(shí)候,經(jīng)常會(huì)遇到為具體問(wèn)題選擇最合適算法的問(wèn)題。雖然有很多有關(guān)機(jī)器學(xué)習(xí)算法的文章詳細(xì)介紹了相關(guān)的算法,但要做出最合適的選擇依然非常困難。

在這篇文章中,我將對(duì)一些基本概念給出簡(jiǎn)要的介紹,對(duì)不同任務(wù)中使用不同類(lèi)型的機(jī)器學(xué)習(xí)算法給出一點(diǎn)建議。在文章的最后,我將對(duì)這些算法進(jìn)行總結(jié)。

首先,你應(yīng)該能區(qū)分以下四種機(jī)器學(xué)習(xí)任務(wù):

監(jiān)督學(xué)習(xí)

無(wú)監(jiān)督學(xué)習(xí)

半監(jiān)督學(xué)習(xí)

強(qiáng)化學(xué)習(xí)

監(jiān)督學(xué)習(xí)

監(jiān)督學(xué)習(xí)是從標(biāo)記的訓(xùn)練數(shù)據(jù)中推斷出某個(gè)功能。通過(guò)擬合標(biāo)注的訓(xùn)練集,找到最優(yōu)的模型參數(shù)來(lái)預(yù)測(cè)其他對(duì)象(測(cè)試集)上的未知標(biāo)簽。如果標(biāo)簽是一個(gè)實(shí)數(shù),我們稱(chēng)之為回歸。如果標(biāo)簽來(lái)自有限數(shù)量的值,這些值是無(wú)序的,那么稱(chēng)之為分類(lèi)。

無(wú)監(jiān)督學(xué)習(xí)

在無(wú)監(jiān)督學(xué)習(xí)中,我們對(duì)于物體知道的信息比較少,特別是訓(xùn)練集沒(méi)有做過(guò)標(biāo)記。那現(xiàn)在的目標(biāo)是什么呢?觀(guān)察對(duì)象之間的相似性,并將它們劃分到不同的群組中。某些對(duì)象可能與其他群組中的對(duì)象都有很大的區(qū)別,那么我們就認(rèn)為這些對(duì)象是異常的。

半監(jiān)督學(xué)習(xí)

半監(jiān)督學(xué)習(xí)包括了前面描述的兩個(gè)問(wèn)題:同時(shí)使用標(biāo)記和未標(biāo)記的數(shù)據(jù)。對(duì)于那些無(wú)法標(biāo)注所有數(shù)據(jù)的人來(lái)說(shuō),這是一個(gè)很好的方法。該方法能夠顯著提高準(zhǔn)確性,因?yàn)樵谑褂糜?xùn)練集中未標(biāo)記數(shù)據(jù)的同時(shí),還能使用少量帶有標(biāo)記的數(shù)據(jù)。

強(qiáng)化學(xué)習(xí)

強(qiáng)化學(xué)習(xí)跟上面提到的方法不太一樣,因?yàn)樵谶@里并沒(méi)有標(biāo)記或未標(biāo)記的數(shù)據(jù)集。強(qiáng)化學(xué)習(xí)涉及到軟件代理應(yīng)該如何在某些環(huán)境中采取行動(dòng)來(lái)最大化累積獎(jiǎng)勵(lì)。

想象一下,你是一個(gè)在陌生環(huán)境中的機(jī)器人,你可以執(zhí)行一些動(dòng)作,并從中獲得獎(jiǎng)勵(lì)。在每執(zhí)行一個(gè)動(dòng)作之后,你的行為會(huì)變得越來(lái)越復(fù)雜越來(lái)越聰明,也就是說(shuō) ,你正在訓(xùn)練自己在執(zhí)行每一個(gè)動(dòng)作之后讓自己表現(xiàn)得更為有效。在生物學(xué)中,這被稱(chēng)為適應(yīng)自然環(huán)境。

常用的機(jī)器學(xué)習(xí)算法

現(xiàn)在,我們對(duì)機(jī)器學(xué)習(xí)的類(lèi)型有了一定的了解,下面,我們來(lái)看一下最流行的算法及其在現(xiàn)實(shí)生活中的應(yīng)用。

線(xiàn)性回歸和線(xiàn)性分類(lèi)器

這些可能是機(jī)器學(xué)習(xí)中最簡(jiǎn)單的算法了。假設(shè)有對(duì)象(矩陣A)的特征x1,... xn和標(biāo)簽(向量B)。我們的目標(biāo)是根據(jù)某些損失函數(shù)(例如MSE或MAE)找到最優(yōu)權(quán)重w1,... wn和這些特征的偏差。 在使用MSE的情況下,有一個(gè)來(lái)自最小二乘法的數(shù)學(xué)公式:

在實(shí)踐中,使用梯度下降來(lái)進(jìn)行優(yōu)化則更為容易,計(jì)算上更有效率。盡管這個(gè)算法很簡(jiǎn)單,但是在存在成千上萬(wàn)個(gè)特征的時(shí)候,這個(gè)方法依然能夠表現(xiàn)良好。更復(fù)雜的算法可能會(huì)遇到過(guò)擬合特征或者是沒(méi)有足夠大的數(shù)據(jù)集的問(wèn)題,而線(xiàn)性回歸則是一個(gè)不錯(cuò)的選擇。

為了防止過(guò)擬合,可使用像lasso和ridge這樣的規(guī)則化技術(shù)。其主要思路是分別把權(quán)重總和以及權(quán)重平方的總和加到損失函數(shù)中。

邏輯回歸

邏輯回歸執(zhí)行的是二元分類(lèi),所以輸出的標(biāo)簽是二元的。給定輸入特征向量x,定義P(y=1|x)為輸出y等于1時(shí)的條件概率。系數(shù)w是模型要學(xué)習(xí)的權(quán)重。

由于該算法需要計(jì)算每個(gè)類(lèi)別的歸屬概率,因此應(yīng)該考慮概率與0或1的差異程度,并像在線(xiàn)性回歸中一樣對(duì)所有對(duì)象取平均值。這種損失函數(shù)是交叉熵的平均值:

邏輯回歸有什么好處呢?它采用了線(xiàn)性組合的特征,并對(duì)其應(yīng)用非線(xiàn)性函數(shù)(sigmoid),所以它是一個(gè)非常小的神經(jīng)網(wǎng)絡(luò)實(shí)例!

決策樹(shù)

另一個(gè)比較流行、并且容易理解的算法是決策樹(shù)。它的圖形能讓你看到你自己的想法,它的引擎有一個(gè)系統(tǒng)的、有記錄的思考過(guò)程。

這個(gè)算法很簡(jiǎn)單。在每個(gè)節(jié)點(diǎn)中,我們選擇所有特征和所有可能的分割點(diǎn)之間的最佳分割。選擇每個(gè)分割以最大化某些功能。在分類(lèi)樹(shù)中使用交叉熵和基尼指數(shù)。在回歸樹(shù)中,最小化該區(qū)域中的點(diǎn)的目標(biāo)值的預(yù)測(cè)變量與分配給它的點(diǎn)之間的平方誤差的總和。

算法會(huì)在每個(gè)節(jié)點(diǎn)上遞歸地完成這個(gè)過(guò)程,直到滿(mǎn)足停止條件為止。

K-means

有的時(shí)候你并不知道標(biāo)簽,而目標(biāo)是根據(jù)對(duì)象的特征來(lái)分配標(biāo)簽。這被稱(chēng)為集聚化任務(wù)。

假設(shè)要把所有的數(shù)據(jù)對(duì)象分成k個(gè)簇,則需要從數(shù)據(jù)中隨機(jī)選擇k個(gè)點(diǎn),并將它們命名為簇的中心。其他對(duì)象的簇由最近的簇中心定義。然后,聚類(lèi)的中心會(huì)被轉(zhuǎn)換并重復(fù)該過(guò)程直到收斂。

雖然這個(gè)技術(shù)非常不錯(cuò),但它仍然有一些缺點(diǎn)。首先,我們并不知道簇的數(shù)量。其次,結(jié)果依賴(lài)開(kāi)始時(shí)隨機(jī)選擇的那個(gè)點(diǎn),算法無(wú)法保證我們能夠?qū)崿F(xiàn)功能的全局最小值。

主成分分析(PCA)

昨晚或者最近的幾個(gè)小時(shí)里你有沒(méi)有在準(zhǔn)備考試?你無(wú)法記住所有的信息,但是想要在可用的時(shí)間內(nèi)最大限度地記住信息,例如,首先學(xué)習(xí)考試中經(jīng)常出現(xiàn)的定理等等。

主成分分析基于類(lèi)似的思想。該算法提供了降維的功能。有時(shí),你有很多的特征,并且彼此之間強(qiáng)相關(guān),模型可以很容易地適應(yīng)大量的數(shù)據(jù)。然后,你可以應(yīng)用PCA。

你應(yīng)該計(jì)算某些向量上的投影,以使數(shù)據(jù)的方差最大化,并盡可能少地丟失信息。而這些向量是來(lái)自數(shù)據(jù)集特征的相關(guān)矩陣的特征向量。

算法的內(nèi)容現(xiàn)在已經(jīng)很清楚了:

計(jì)算特征列的相關(guān)矩陣,找出該矩陣的特征向量。

將這些多維向量計(jì)算出來(lái),并計(jì)算所有特征的投影。

新特征是投影中的坐標(biāo),其數(shù)量取決于投影的特征向量的數(shù)量。

神經(jīng)網(wǎng)絡(luò)

在上文講到邏輯回歸的時(shí)候,就已經(jīng)提到了神經(jīng)網(wǎng)絡(luò)。在一些具體的任務(wù)中,有很多不同的體系結(jié)構(gòu)都非常有價(jià)值。而神經(jīng)網(wǎng)絡(luò)更多的時(shí)候是一系列的層或組件,它們之間存在線(xiàn)性連接并遵循非線(xiàn)性。

如果你正在處理圖像,那么卷積深度神經(jīng)網(wǎng)絡(luò)能展現(xiàn)出不錯(cuò)的結(jié)果。而非線(xiàn)性則通過(guò)卷積層和匯聚層表現(xiàn)出來(lái),它能夠捕捉圖像的特征。

要處理文本和序列,最好選擇遞歸神經(jīng)網(wǎng)絡(luò)。 RNN包含了LSTM或GRU模塊,并且能夠數(shù)據(jù)一同使用。也許,最有名的RNN應(yīng)用是機(jī)器翻譯吧。

結(jié)論

我希望能向大家解釋最常用的機(jī)器學(xué)習(xí)算法,并就針對(duì)具體問(wèn)題如何選擇機(jī)器學(xué)習(xí)算法提供建議。為了能讓你更輕松的掌握這些內(nèi)容,我準(zhǔn)備了下面這個(gè)總結(jié)。

線(xiàn)性回歸和線(xiàn)性分類(lèi)器。盡管看起來(lái)簡(jiǎn)單,但當(dāng)其他算法在大量特征上遇到過(guò)擬合的問(wèn)題時(shí),它的優(yōu)勢(shì)就表現(xiàn)出來(lái)了。

Logistic回歸是最簡(jiǎn)單的非線(xiàn)性分類(lèi)器,具有二元分類(lèi)的參數(shù)和非線(xiàn)性函數(shù)(S形)的線(xiàn)性組合。

決策樹(shù)通常與人類(lèi)的決策過(guò)程相似,并且易于解釋。但它們最常用于隨機(jī)森林或梯度增強(qiáng)這樣的組合中。

K-means是一個(gè)更原始、但又非常容易理解的算法。

PCA是降低信息損失最少的特征空間維度的絕佳選擇。

神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)算法的新武器,可以應(yīng)用于許多任務(wù),但其訓(xùn)練的計(jì)算復(fù)雜度相當(dāng)大。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀(guān)點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

原文標(biāo)題:機(jī)器學(xué)習(xí)算法選用指南

文章出處:【微信號(hào):tyutcsplab,微信公眾號(hào):智能感知與物聯(lián)網(wǎng)技術(shù)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    【「# ROS 2智能機(jī)器人開(kāi)發(fā)實(shí)踐」閱讀體驗(yàn)】視覺(jué)實(shí)現(xiàn)的基礎(chǔ)算法的應(yīng)用

    學(xué)習(xí)建議 對(duì)于初學(xué)者,建議先通過(guò)仿真(如Gazebo)驗(yàn)證算法,再遷移到真實(shí)機(jī)器人,以降低硬件調(diào)試成本。 多參與開(kāi)源社區(qū)(如ROS2
    發(fā)表于 05-03 19:41

    請(qǐng)問(wèn)STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個(gè)系列的芯片?

    STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個(gè)系列的芯片?
    發(fā)表于 03-13 07:34

    人工智能和機(jī)器學(xué)習(xí)以及Edge AI的概念與應(yīng)用

    與人工智能相關(guān)各種技術(shù)的概念介紹,以及先進(jìn)的Edge AI(邊緣人工智能)的最新發(fā)展與相關(guān)應(yīng)用。 人工智能和機(jī)器學(xué)習(xí)是現(xiàn)代科技的核心技術(shù) 人工智能(AI)和
    的頭像 發(fā)表于 01-25 17:37 ?710次閱讀
    人工智能和<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>以及Edge AI的<b class='flag-5'>概念</b>與應(yīng)用

    華為云 Flexus X 實(shí)例部署安裝 Jupyter Notebook,學(xué)習(xí) AI,機(jī)器學(xué)習(xí)算法

    前言 由于本人最近在學(xué)習(xí)一些機(jī)器算法,AI 算法的知識(shí),需要搭建一個(gè)學(xué)習(xí)環(huán)境,所以就在最近購(gòu)買(mǎi)的華為云 Flexus X 實(shí)例上安裝了
    的頭像 發(fā)表于 01-02 13:43 ?380次閱讀
    華為云 Flexus X 實(shí)例部署安裝 Jupyter Notebook,<b class='flag-5'>學(xué)習(xí)</b> AI,<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語(yǔ)。在本文中,我們會(huì)介紹傳統(tǒng)機(jī)器
    的頭像 發(fā)表于 12-30 09:16 ?905次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    自然語(yǔ)言處理與機(jī)器學(xué)習(xí)的關(guān)系 自然語(yǔ)言處理的基本概念及步驟

    Learning,簡(jiǎn)稱(chēng)ML)是人工智能的一個(gè)核心領(lǐng)域,它使計(jì)算機(jī)能夠從數(shù)據(jù)中學(xué)習(xí)并做出預(yù)測(cè)或決策。自然語(yǔ)言處理與機(jī)器學(xué)習(xí)之間有著密切的關(guān)系,因?yàn)?b class='flag-5'>機(jī)器
    的頭像 發(fā)表于 12-05 15:21 ?1583次閱讀

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    緊密。 NPU的起源與特點(diǎn) NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)項(xiàng)目中提出,旨在為T(mén)ensorFlow框架提供專(zhuān)用的硬件加速。NPU的設(shè)計(jì)目標(biāo)是提高機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 11-15 09:19 ?1007次閱讀

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】+ 鳥(niǎo)瞰這本書(shū)

    清晰,從時(shí)間序列分析的基礎(chǔ)理論出發(fā),逐步深入到機(jī)器學(xué)習(xí)算法在時(shí)間序列預(yù)測(cè)中的應(yīng)用,內(nèi)容全面,循序漸進(jìn)。每一章都經(jīng)過(guò)精心設(shè)計(jì),對(duì)理論知識(shí)進(jìn)行了詳細(xì)的闡述,對(duì)實(shí)際案例進(jìn)行了生動(dòng)的展示,使讀者在理論與實(shí)踐
    發(fā)表于 08-12 11:28

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】+ 簡(jiǎn)單建議

    這本書(shū)以其系統(tǒng)性的框架和深入淺出的講解,為讀者繪制了一幅時(shí)間序列分析與機(jī)器學(xué)習(xí)融合應(yīng)用的宏偉藍(lán)圖。作者不僅扎實(shí)地構(gòu)建了時(shí)間序列分析的基礎(chǔ)知識(shí),更巧妙地展示了機(jī)器學(xué)習(xí)如何在這一領(lǐng)域發(fā)揮巨
    發(fā)表于 08-12 11:21

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】全書(shū)概覽與時(shí)間序列概述

    如何通過(guò)根因分析技術(shù)獲得導(dǎo)致故障的維度和元素,包括基于時(shí)間序列異常檢測(cè)算法的根因分析、基于熵的根因分析、基于樹(shù)模型的根因分析、規(guī)則學(xué)習(xí)等。 ●第7章“智能運(yùn)維的應(yīng)用場(chǎng)景”:介紹智能運(yùn)維領(lǐng)域的應(yīng)用,包括
    發(fā)表于 08-07 23:03

    機(jī)器學(xué)習(xí)算法原理詳解

    機(jī)器學(xué)習(xí)作為人工智能的一個(gè)重要分支,其目標(biāo)是通過(guò)讓計(jì)算機(jī)自動(dòng)從數(shù)據(jù)中學(xué)習(xí)并改進(jìn)其性能,而無(wú)需進(jìn)行明確的編程。本文將深入解讀幾種常見(jiàn)的機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 07-02 11:25 ?2011次閱讀

    機(jī)器學(xué)習(xí)在數(shù)據(jù)分析中的應(yīng)用

    隨著大數(shù)據(jù)時(shí)代的到來(lái),數(shù)據(jù)量的爆炸性增長(zhǎng)對(duì)數(shù)據(jù)分析提出了更高的要求。機(jī)器學(xué)習(xí)作為一種強(qiáng)大的工具,通過(guò)訓(xùn)練模型從數(shù)據(jù)中學(xué)習(xí)規(guī)律,為企業(yè)和組織提供了更高效、更準(zhǔn)確的數(shù)據(jù)分析能力。本文將深入探討機(jī)器
    的頭像 發(fā)表于 07-02 11:22 ?1136次閱讀

    機(jī)器學(xué)習(xí)的經(jīng)典算法與應(yīng)用

    關(guān)于數(shù)據(jù)機(jī)器學(xué)習(xí)就是喂入算法和數(shù)據(jù),讓算法從數(shù)據(jù)中尋找一種相應(yīng)的關(guān)系。Iris鳶尾花數(shù)據(jù)集是一個(gè)經(jīng)典數(shù)據(jù)集,在統(tǒng)計(jì)學(xué)習(xí)
    的頭像 發(fā)表于 06-27 08:27 ?1889次閱讀
    <b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>的經(jīng)典<b class='flag-5'>算法</b>與應(yīng)用

    名單公布!【書(shū)籍評(píng)測(cè)活動(dòng)NO.35】如何用「時(shí)間序列與機(jī)器學(xué)習(xí)」解鎖未來(lái)?

    應(yīng)用,將理論基礎(chǔ)與實(shí)踐案例相結(jié)合,作者憑借扎實(shí)的數(shù)學(xué)功底及其在企業(yè)界的豐富實(shí)踐經(jīng)驗(yàn),將機(jī)器學(xué)習(xí)與時(shí)間序列分析巧妙融合在書(shū)中。 全書(shū)書(shū)共分為8章,系統(tǒng)介紹時(shí)間序列的基礎(chǔ)知識(shí)、常用預(yù)測(cè)方法、異常檢測(cè)
    發(fā)表于 06-25 15:00

    機(jī)器學(xué)習(xí)入門(mén):基本概念介紹

    機(jī)器學(xué)習(xí)(GraphMachineLearning,簡(jiǎn)稱(chēng)GraphML)是機(jī)器學(xué)習(xí)的一個(gè)分支,專(zhuān)注于利用圖形結(jié)構(gòu)的數(shù)據(jù)。在圖形結(jié)構(gòu)中,數(shù)據(jù)以圖的形式表示,其中的節(jié)點(diǎn)(或頂點(diǎn))表示實(shí)體
    的頭像 發(fā)表于 05-16 08:27 ?675次閱讀
    圖<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>入門(mén):基本<b class='flag-5'>概念</b><b class='flag-5'>介紹</b>