一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何消除PCB布局帶來的噪聲問題

h1654155971.8456 ? 來源:cc ? 2019-02-15 08:42 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

“噪聲問題!”——這是每位電路板設(shè)計(jì)師都會(huì)聽到的四個(gè)字。為了解決噪聲問題,往往要花費(fèi)數(shù)小時(shí)的時(shí)間進(jìn)行實(shí)驗(yàn)室測(cè)試,以便揪出元兇,但最終卻發(fā)現(xiàn),噪聲是由開關(guān)電源的布局不當(dāng)而引起的……

這里推薦一個(gè)ADI的所有電源器件評(píng)估板都采用的布局布線指導(dǎo)原則,以幫助j大家避免此類噪聲問題。文中的示例開關(guān)調(diào)節(jié)器布局采用雙通道同步開關(guān)控制ADP1850,第一步是確定調(diào)節(jié)器的電流路徑。然后,電流路徑?jīng)Q定了器件在該低噪聲布局布線設(shè)計(jì)中的位置。

◆◆一、確定電流路徑◆◆

在開關(guān)轉(zhuǎn)換器設(shè)計(jì)中,高電流路徑和低電流路徑彼此非??拷?。交流(AC)路徑攜帶有尖峰和噪聲,高直流(DC)路徑會(huì)產(chǎn)生相當(dāng)大的壓降,低電流路徑往往對(duì)噪聲很敏感。適當(dāng)PCB布局布線的關(guān)鍵在于確定關(guān)鍵路徑,然后安排器件,并提供足夠的銅面積以免高電流破壞低電流。性能不佳的表現(xiàn)是接地反彈和噪聲注入IC及系統(tǒng)的其余部分。

圖1所示為一個(gè)同步降壓調(diào)節(jié)器設(shè)計(jì),它包括一個(gè)開關(guān)控制器和以下外部電源器件:高端開關(guān)、低端開關(guān)、電感、輸入電容、輸出電容和旁路電容。圖1中的箭頭表示高開關(guān)電流流向。必須小心放置這些電源器件,避免產(chǎn)生不良的寄生電容和電感,導(dǎo)致過大噪聲、過沖、響鈴振蕩和接地反彈。

圖1. 典型開關(guān)調(diào)節(jié)器(顯示交流和直流電流路徑)

諸如DH、DL、BST和SW之類的開關(guān)電流路徑離開控制器后需妥善安排,避免產(chǎn)生過大寄生電感。這些線路承載的高δI/δt交流開關(guān)脈沖電流可能達(dá)到3A以上并持續(xù)數(shù)納秒。高電流環(huán)路必須很小,以盡可能降低輸出響鈴振蕩,并且避免拾取額外的噪聲。

低值、低幅度信號(hào)路徑,如補(bǔ)償和反饋器件等,對(duì)噪聲很敏感。應(yīng)讓這些路徑遠(yuǎn)離開關(guān)節(jié)點(diǎn)和電源器件,以免注入干擾噪聲。

◆◆二、布局物理規(guī)劃◆◆

PCB物理規(guī)劃(foor plan)非常重要,必須使電流環(huán)路面積最小,并且合理安排電源器件,使得電流順暢流動(dòng),避免尖角和窄小的路徑。這將有助于減小寄生電容和電感,從而消除接地反彈。

圖2所示為采用開關(guān)控制器ADP1850的雙路輸出降壓轉(zhuǎn)換器的PCB布局。請(qǐng)注意,電源器件的布局將電流環(huán)路面積和寄生電感降至最小。虛線表示高電流路徑。同步和異步控制器均可以使用這一物理規(guī)劃技術(shù)。在異步控制器設(shè)計(jì)中,肖特基二極管取代低端開關(guān)。

圖2. 采用ADP1850控制器的雙路輸出降壓轉(zhuǎn)換器的PCB布局

◆◆NOTES◆◆

電源器件:MOSFET和電容(輸入、旁路和輸出)

頂部和底部電源開關(guān)處的電流波形是一個(gè)具有非常高δI/δt的脈沖。因此,連接各開關(guān)的路徑應(yīng)盡可能短,以盡量降低控制器拾取的噪聲和電感環(huán)路傳輸?shù)脑肼暋T赑CB一側(cè)上使用一對(duì)DPAK或SO-8封裝的FET時(shí),最好沿相反方向旋轉(zhuǎn)這兩個(gè)FET,使得開關(guān)節(jié)點(diǎn)位于該對(duì)FET的一側(cè),并利用合適的陶瓷旁路電容將高端漏電流旁路到低端源。務(wù)必將旁路電容盡可能靠近MOSFET放置(參見圖2),以盡量減小穿過FET和電容的環(huán)路周圍的電感。

輸入旁路電容和輸入大電容的放置對(duì)于控制接地反彈至關(guān)重要。輸出濾波器電容的負(fù)端連接應(yīng)盡可能靠近低端MOSFET的源,這有助于減小引起接地反彈的環(huán)路電感。圖2中的Cb1和Cb2是陶瓷旁路電容,這些電容的推薦值范圍是1 μF至22 μF。對(duì)于高電流應(yīng)用,應(yīng)額外并聯(lián)一個(gè)較大值的濾波器電容,如圖2的CIN所示。

散熱考慮和接地層

在重載條件下,功率MOSFET、電感和大電容的等效串聯(lián)電阻(ESR)會(huì)產(chǎn)生大量的熱。為了有效散熱,圖2的示例在這些電源器件下面放置了大面積的銅。

多層PCB的散熱效果好于2層PCB。為了提高散熱和導(dǎo)電性能,應(yīng)在標(biāo)準(zhǔn)1盎司銅層上使用2盎司厚度的銅。多個(gè)PGND層通過過孔連在一起也會(huì)有幫助。圖3顯示一個(gè)4層PCB設(shè)計(jì)的頂層、第三層和第四層上均分布有PGND層。

圖3. 截面圖:連接PGND層以改善散熱

這種多接地層方法能夠隔離對(duì)噪聲敏感的信號(hào)。如圖2所示,補(bǔ)償器件、軟啟動(dòng)電容、偏置輸入旁路電容和輸出反饋分壓器電阻的負(fù)端全都連接到AGND層。請(qǐng)勿直接將任何高電流或高δI/δt路徑連接到隔離AGND層。AGND是一個(gè)安靜的接地層,其中沒有大電流流過。

所有電源器件(如低端開關(guān)、旁路電容、輸入和輸出電容等)的負(fù)端連接到PGND層,該層承載高電流。

GND層內(nèi)的壓降可能相當(dāng)大,以至于影響輸出精度。通過一條寬走線將AGND層連接到輸出電容的負(fù)端(參見圖4),可以顯著改善輸出精度和負(fù)載調(diào)節(jié)。

圖4. AGND層到PGND層的連接

AGND層一路擴(kuò)展到輸出電容,AGND層和PGND層在輸出電容的負(fù)端連接到過孔。

圖2顯示了另一種連接AGND和PGND層的技術(shù),AGND層通過輸出大電容負(fù)端附近的過孔連接到PGND層。圖3顯示了PCB上某個(gè)位置的截面,AGND層和PGND層通過輸出大電容負(fù)端附近的過孔相連。

電流檢測(cè)路徑

為了避免干擾噪聲引起精度下降,電流模式開關(guān)調(diào)節(jié)器的電流檢測(cè)路徑布局必須妥當(dāng)。雙通道應(yīng)用尤其要更加重視,消除任何通道間串?dāng)_。

雙通道降壓控制器ADP1850將低端MOSFET的導(dǎo)通電阻RDS(ON)用作控制環(huán)路架構(gòu)的一部分。此架構(gòu)在SWx與PGNDx引腳之間檢測(cè)流經(jīng)低端MOSFET的電流。一個(gè)通道中的地電流噪聲可能會(huì)耦合到相鄰?fù)ǖ乐小R虼?,?wù)必使SWx和PGNDx走線盡可能短,并將其放在靠近MOSFET的地方,以便精確檢測(cè)電流。到SWx和PGNDx節(jié)點(diǎn)的連接務(wù)必采用開爾文檢測(cè)技術(shù),如圖2和圖5所示。注意,相應(yīng)的PGNDx走線連接到低端MOSFET的源。不要隨意將PGND層連接到PGNDx引腳。

相比之下,對(duì)于ADP1829等雙通道電壓模式控制器,PGND1和PGND2引腳則是直接通過過孔連接到PGND層。

圖5. 兩個(gè)通道的接地技術(shù)

反饋和限流檢測(cè)路徑

反饋(FB)和限流(ILIM)引腳是低信號(hào)電平輸入,因此,它們對(duì)容性和感性噪聲干擾敏感。FB和ILIM走線應(yīng)避免靠近高δI/δt走線。注意不要讓走線形成環(huán)路,導(dǎo)致不良電感增加。在ILIM和PGND引腳之間增加一個(gè)小MLCC去耦電容(如22 pF),有助于對(duì)噪聲進(jìn)行進(jìn)一步濾波。

開關(guān)節(jié)點(diǎn)

在開關(guān)調(diào)節(jié)器電路中,開關(guān)(SW)節(jié)點(diǎn)是噪聲最高的地方,因?yàn)樗休d著很大的交流和直流電壓/電流。因此SW節(jié)點(diǎn)需要較大面積的銅來盡可能降低阻性壓降。將MOSFET和電感彼此靠近放在銅層上,可以使串聯(lián)電阻和電感最小。

對(duì)電磁干擾、開關(guān)節(jié)點(diǎn)噪聲和響鈴振蕩更敏感的應(yīng)用可以使用一個(gè)小緩沖器。緩沖器由電阻和電容串聯(lián)而成(參見圖6中的RSNUB和CSNUB),放在SW節(jié)點(diǎn)與PGND層之間,可以降低SW節(jié)點(diǎn)上的響鈴振蕩和電磁干擾。注意,增加緩沖器可能會(huì)使整體效率略微下降0.2%到0.4%。

圖6. 緩沖器和柵極電阻電阻

柵極驅(qū)動(dòng)器路徑

柵極驅(qū)動(dòng)走線(DH和DL)也要處理高δI/δt,往往會(huì)產(chǎn)生響鈴振蕩和過沖。這些走線應(yīng)盡可能短。最好直接布線,避免使用饋通過孔。如果必須使用過孔,則每條走線應(yīng)使用兩個(gè)過孔,以降低峰值電流密度和寄生電感。

在DH或DL引腳上串聯(lián)一個(gè)小電阻(約2 Ω至4 Ω)可以減慢柵極驅(qū)動(dòng),從而也能降低柵極噪聲和過沖。另外,BST與SW引腳之間也可以連接一個(gè)電阻(參見圖6)。在布局期間用0Ω柵極電阻保留空間,可以提高日后進(jìn)行評(píng)估的靈活性。增加的柵極電阻會(huì)延長(zhǎng)柵極電荷上升和下降時(shí)間,導(dǎo)致MOSFET的開關(guān)功率損耗提高。

◆◆總結(jié)◆◆

了解電流路徑、其敏感性以及適當(dāng)?shù)钠骷胖茫窍齈CB布局設(shè)計(jì)噪聲問題的關(guān)鍵。ADI的所有電源器件評(píng)估板都采用上述布局布線指導(dǎo)原則來實(shí)現(xiàn)最佳性能。注意,所有開關(guān)電源都具有相同的元件和相似的電流路徑敏感性。因此,以針對(duì)電流模式降壓調(diào)節(jié)器的ADP1850為例說明的指導(dǎo)原則同樣適用于電壓模式和/或升壓開關(guān)調(diào)節(jié)器的布局布線。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • pcb
    pcb
    +關(guān)注

    關(guān)注

    4366

    文章

    23484

    瀏覽量

    409495
  • 噪聲
    +關(guān)注

    關(guān)注

    13

    文章

    1140

    瀏覽量

    48129

原文標(biāo)題:消除PCB布局帶來的噪聲問題,這些要點(diǎn)得注意

文章出處:【微信號(hào):eda365wx,微信公眾號(hào):EDA365電子論壇】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    4500字,講述DC/DC電源PCB布局

    噪聲。如果問題與印刷電路板( PCB布局有關(guān),則很難確定原因。EMC也是很注重PCB布局,這就是為什么在開關(guān)電源設(shè)計(jì)的早期正確
    發(fā)表于 04-29 14:00

    解決噪聲問題試試從PCB布局布線入手

    ,導(dǎo)致產(chǎn)品延期和開發(fā)成本增加。 本文將提供有關(guān)印刷電路板(PCB)布局布線的指南,以幫助設(shè)計(jì)師避免此類噪聲問題。作為例子的開關(guān)調(diào)節(jié)器布局采用雙通道同步開關(guān)控制器 ADP1850,第一步
    發(fā)表于 04-22 09:46

    如何做好非隔離式開關(guān)電源的PCB布局

    一個(gè)良好的布局設(shè)計(jì)可優(yōu)化效率,減緩熱應(yīng)力,并盡量減小走線與元件之間的噪聲與作用。這一切都源于設(shè)計(jì)人員對(duì)電源中電流傳導(dǎo)路徑以及信號(hào)流的理解。 當(dāng)一塊原型電源板首次加電時(shí),最好的情況是它不僅能工作
    發(fā)表于 03-13 14:13

    DC-DC 的 PCB布局設(shè)計(jì)小技巧

    的穩(wěn)定性和它的性能起著至關(guān)重要的影響,不恰當(dāng)?shù)?b class='flag-5'>PCB布局,可能會(huì)導(dǎo)致一系列的問題,比如: 1,效率過低芯片過熱 2、驅(qū)動(dòng)波形的不穩(wěn)定 3、EMI問題 4、輸出紋波過大超標(biāo) 5、芯片不工作或者直接燒毀這些不
    發(fā)表于 03-11 10:48

    GeneSiC MOSFETs的PCB布局建議

    電子發(fā)燒友網(wǎng)站提供《GeneSiC MOSFETs的PCB布局建議.pdf》資料免費(fèi)下載
    發(fā)表于 01-24 13:55 ?0次下載
    GeneSiC MOSFETs的<b class='flag-5'>PCB</b><b class='flag-5'>布局</b>建議

    104條關(guān)于PCB布局布線的小技巧

    在電子產(chǎn)品設(shè)計(jì)中,PCB布局布線是重要的一步,PCB布局布線的好壞將直接影響電路的性能。 現(xiàn)在,雖然有很多軟件可以實(shí)現(xiàn)PCB自動(dòng)
    的頭像 發(fā)表于 01-07 09:21 ?1090次閱讀
    104條關(guān)于<b class='flag-5'>PCB</b><b class='flag-5'>布局</b>布線的小技巧

    用TMS320C31實(shí)現(xiàn)噪聲消除系統(tǒng)

    電子發(fā)燒友網(wǎng)站提供《用TMS320C31實(shí)現(xiàn)噪聲消除系統(tǒng).pdf》資料免費(fèi)下載
    發(fā)表于 10-28 10:06 ?0次下載
    用TMS320C31實(shí)現(xiàn)<b class='flag-5'>噪聲</b><b class='flag-5'>消除</b>系統(tǒng)

    TPS65921 PCB布局指南

    電子發(fā)燒友網(wǎng)站提供《TPS65921 PCB布局指南.pdf》資料免費(fèi)下載
    發(fā)表于 10-25 10:01 ?0次下載
    TPS65921 <b class='flag-5'>PCB</b><b class='flag-5'>布局</b>指南

    TVP5160 PCB布局指南

    電子發(fā)燒友網(wǎng)站提供《TVP5160 PCB布局指南.pdf》資料免費(fèi)下載
    發(fā)表于 09-30 11:46 ?1次下載
    TVP5160 <b class='flag-5'>PCB</b><b class='flag-5'>布局</b>指南

    通過運(yùn)放輸出的直流有噪聲,為什么?

    通過運(yùn)放輸出的直流有噪聲,加了一個(gè)30HZ的低通濾波器后還是有峰峰值為100mv的噪聲,這是器件本身帶來噪聲,還是其他的原因?還有像這樣的噪聲
    發(fā)表于 09-20 07:30

    晶振在pcb布局中注意事項(xiàng)

    晶振(Crystal Oscillator)在PCB布局中是一個(gè)非常重要的組件,它為電子設(shè)備提供穩(wěn)定的時(shí)鐘信號(hào)。在設(shè)計(jì)和布局過程中,需要考慮多種因素以確保晶振的性能和穩(wěn)定性。 位置選擇 : 晶振應(yīng)盡
    的頭像 發(fā)表于 09-19 10:55 ?1886次閱讀

    如何消除放大器中高頻正弦噪聲?

    怎么消除放大器中高頻正弦噪聲
    發(fā)表于 09-18 06:50

    求助,關(guān)于運(yùn)算放大器反饋電路PCB布局請(qǐng)教

    新手剛畫PCB板,這是第一級(jí)運(yùn)放,用來做光電轉(zhuǎn)換(I-V),電路原理圖和兩種PCB布線圖在下面了: 有幾個(gè)問題想請(qǐng)教一下: 1、 PCB布局給出更好的方法? 2、 給推薦本比較
    發(fā)表于 09-04 07:42

    pcb設(shè)計(jì)中布局的要點(diǎn)是什么

    PCB設(shè)計(jì)中,布局是一個(gè)非常重要的環(huán)節(jié),它直接影響到電路的性能、可靠性和成本。以下是關(guān)于PCB布局的一些要點(diǎn),這些要點(diǎn)將幫助您設(shè)計(jì)出高質(zhì)量的PCB
    的頭像 發(fā)表于 09-02 14:48 ?855次閱讀

    OPA4388如何消除1/f噪聲?

    斬波穩(wěn)零運(yùn)放來實(shí)現(xiàn):基礎(chǔ)信號(hào)被放大的同時(shí),1/f噪聲在輸出上得到明顯抑制! 目前考慮的是采用OPA4388,但是我們不知道它是否可以有效抑制該噪聲?如果不能,有更合適的芯片推薦嗎? 同時(shí)希望分享一下對(duì)應(yīng)運(yùn)放的消除1/f
    發(fā)表于 08-14 08:16