一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機器學習準確預測發(fā)病風險

機器人技術(shù)與應用 ? 來源:YXQ ? 2019-07-19 17:15 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

近日,佛羅里達大西洋大學(FAU)和耶魯大學醫(yī)學院發(fā)表的兩項獨立研究表明:機器學習算法在改善慢性病風險評估和護理方面發(fā)揮了關(guān)鍵作用,尤其對阿爾茨海默病(俗稱老年癡呆癥)患者和心臟病患者,機器學習可準確地預測發(fā)病風險。

FAU牽頭的研發(fā)團隊,利用患者對藥物、睡眠質(zhì)量和記憶力等健康問題的回復,結(jié)合人口統(tǒng)計學信息,開發(fā)了一種機器學習模型來評估患者患老年癡呆癥的風險。該方法可從多維度分析人體屬性和大腦的行為功能,挖掘和分析高級數(shù)據(jù)并持續(xù)學習,對疾病的進一步發(fā)展進行預測,該方法對阿爾茨海默病的檢測和治療具有重要意義。

耶魯大學醫(yī)學院的研究人員在Radiology發(fā)表的另一項研究中發(fā)現(xiàn):將病人的64個冠狀CT成像特征輸入到機器學習模型中。該模型通過提取分析數(shù)據(jù)中的形態(tài)模式,可預測具有特定模式的患者比具有其他模式的患者更可能發(fā)生心臟病等不良事件。和傳統(tǒng)的方法相比,機器學習的預測結(jié)果更加準確。研究人員表示,如果增加人體的詳細數(shù)據(jù),如年齡、吸煙、糖尿病和高血壓等,會進一步提高該方法的預測效果。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4711

    瀏覽量

    95446
  • 機器學習
    +關(guān)注

    關(guān)注

    66

    文章

    8505

    瀏覽量

    134677

原文標題:機器學習可用于預測老年癡呆癥和心臟病發(fā)作風險

文章出處:【微信號:robotmagazine,微信公眾號:機器人技術(shù)與應用】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    傳統(tǒng)機器學習方法和應用指導

    在上一篇文章中,我們介紹了機器學習的關(guān)鍵概念術(shù)語。在本文中,我們會介紹傳統(tǒng)機器學習的基礎(chǔ)知識和多種算法特征,供各位老師選擇。 01 傳統(tǒng)機器
    的頭像 發(fā)表于 12-30 09:16 ?1198次閱讀
    傳統(tǒng)<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法和應用指導

    英國將試用AI工具提前預測糖尿病風險

    ,就準確預測出其患病可能性。 該AI工具的核心功能在于分析常規(guī)心電圖檢測結(jié)果。通過先進的算法,它能夠識別人眼難以察覺的細微變化,從而對患者未來罹患2型糖尿病的風險進行預警。這一突破性的應用,不僅為醫(yī)生提供了更為精準的診斷依據(jù),也
    的頭像 發(fā)表于 12-27 10:26 ?1275次閱讀

    如何選擇云原生機器學習平臺

    當今,云原生機器學習平臺因其彈性擴展、高效部署、低成本運營等優(yōu)勢,逐漸成為企業(yè)構(gòu)建和部署機器學習應用的首選。然而,市場上的云原生機器
    的頭像 發(fā)表于 12-25 11:54 ?461次閱讀

    【「具身智能機器人系統(tǒng)」閱讀體驗】+數(shù)據(jù)在具身人工智能中的價值

    100 倍 。此外,Sim2Real 技術(shù)的進步也促進了技能與知識從模擬環(huán)境到實際應用的轉(zhuǎn)移。這項技術(shù)在虛擬空間中訓練機器人和 AI 系統(tǒng),使它們能夠安全有效地學習任務(wù),而不受現(xiàn)實世界的物理風險
    發(fā)表于 12-24 00:33

    自然語言處理與機器學習的關(guān)系 自然語言處理的基本概念及步驟

    Learning,簡稱ML)是人工智能的一個核心領(lǐng)域,它使計算機能夠從數(shù)據(jù)中學習并做出預測或決策。自然語言處理與機器學習之間有著密切的關(guān)系,因為
    的頭像 發(fā)表于 12-05 15:21 ?1994次閱讀

    ASR和機器學習的關(guān)系

    自動語音識別(ASR)技術(shù)的發(fā)展一直是人工智能領(lǐng)域的一個重要分支,它使得機器能夠理解和處理人類語言。隨著機器學習(ML)技術(shù)的迅猛發(fā)展,ASR系統(tǒng)的性能和準確性得到了顯著提升。 ASR
    的頭像 發(fā)表于 11-18 15:16 ?785次閱讀

    什么是機器學習?通過機器學習方法能解決哪些問題?

    來源:Master編程樹“機器學習”最初的研究動機是讓計算機系統(tǒng)具有人的學習能力以便實現(xiàn)人工智能。因為沒有學習能力的系統(tǒng)很難被認為是具有智能的。目前被廣泛采用的
    的頭像 發(fā)表于 11-16 01:07 ?970次閱讀
    什么是<b class='flag-5'>機器</b><b class='flag-5'>學習</b>?通過<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法能解決哪些問題?

    NPU與機器學習算法的關(guān)系

    在人工智能領(lǐng)域,機器學習算法是實現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度學習機器
    的頭像 發(fā)表于 11-15 09:19 ?1240次閱讀

    【「時間序列與機器學習」閱讀體驗】時間序列的信息提取

    個重要環(huán)節(jié),目標是從給定的時間序列數(shù)據(jù)中提取出有用的信息和特征,以支持后續(xù)的分析和預測任務(wù)。 特征工程(Feature Engineering)是將數(shù)據(jù)轉(zhuǎn)換為更好地表示潛在問題的特征,從而提高機器學習
    發(fā)表于 08-17 21:12

    【《時間序列與機器學習》閱讀體驗】+ 時間序列的信息提取

    本人有些機器學習的基礎(chǔ),理解起來一點也不輕松,加油。 作者首先說明了時間序列的信息提取是時間序列分析的一個重要環(huán)節(jié),目標是從給定的時間序列數(shù)據(jù)中提取出有用的信息和特征,以支持后續(xù)的分析和預測任務(wù),可以
    發(fā)表于 08-14 18:00

    【「時間序列與機器學習」閱讀體驗】+ 鳥瞰這本書

    清晰,從時間序列分析的基礎(chǔ)理論出發(fā),逐步深入到機器學習算法在時間序列預測中的應用,內(nèi)容全面,循序漸進。每一章都經(jīng)過精心設(shè)計,對理論知識進行了詳細的闡述,對實際案例進行了生動的展示,使讀者在理論與實踐
    發(fā)表于 08-12 11:28

    【「時間序列與機器學習」閱讀體驗】+ 簡單建議

    這本書以其系統(tǒng)性的框架和深入淺出的講解,為讀者繪制了一幅時間序列分析與機器學習融合應用的宏偉藍圖。作者不僅扎實地構(gòu)建了時間序列分析的基礎(chǔ)知識,更巧妙地展示了機器學習如何在這一領(lǐng)域發(fā)揮巨
    發(fā)表于 08-12 11:21

    【《時間序列與機器學習》閱讀體驗】+ 了解時間序列

    。 可以探索現(xiàn)象發(fā)展變化的規(guī)律,對某些社會經(jīng)濟現(xiàn)象進行預測。 利用時間序列可以在不同地區(qū)或國家之間進行對比分析,這也是統(tǒng)計分析的重要方法之一。 而《時間序列與機器學習》一書的后幾章分別介紹了時間序列在廣告
    發(fā)表于 08-11 17:55

    【「時間序列與機器學習」閱讀體驗】全書概覽與時間序列概述

    數(shù)據(jù)中提取特征并將其轉(zhuǎn)化為交易策略,以及機器學習在其他金融領(lǐng)域(包括資產(chǎn)定價、資產(chǎn)配置、波動率預測)的應用。 全書彩版印刷,內(nèi)容結(jié)構(gòu)嚴整,條理清晰,循序漸進,由淺入深,是很好的時間序列學習
    發(fā)表于 08-07 23:03

    【《大語言模型應用指南》閱讀體驗】+ 基礎(chǔ)知識學習

    能夠關(guān)注到輸入文本中的重要部分,從而提高預測準確性和效率。這種機制允許模型在處理文本時同時考慮多個位置的信息,并根據(jù)重要性進行加權(quán)處理。 一些關(guān)鍵技術(shù) 1. 上下文理解 大語言模型能夠同時考慮句子前后
    發(fā)表于 08-02 11:03