一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

計算機(jī)視覺方向簡介

機(jī)器視覺自動化 ? 來源:計算機(jī)視覺life ? 作者:計算機(jī)視覺life ? 2021-04-15 15:14 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

VIO-SLAM

Visual-Inertial Odometry(VIO)即視覺慣性里程計,有時也叫視覺慣性系統(tǒng)(VINS,visual-inertial system),是融合相機(jī)和IMU數(shù)據(jù)實現(xiàn)SLAM的算法,根據(jù)融合框架的不同又分為松耦合和緊耦合。

9accbf00-9ce0-11eb-8b86-12bb97331649.jpg

其中VO(visual odometry)指僅視覺的里程計,T表示位置和姿態(tài)。松耦合中視覺運動估計和慣導(dǎo)運動估計系統(tǒng)是兩個獨立的模塊,將每個模塊的輸出結(jié)果進(jìn)行融合。

9afc8f46-9ce0-11eb-8b86-12bb97331649.jpg

緊耦合則是使用兩個傳感器的原始數(shù)據(jù)共同估計一組變量,傳感器噪聲也是相互影響的。緊耦合算法比較復(fù)雜,但充分利用了傳感器數(shù)據(jù),可以實現(xiàn)更好的效果,是目前研究的重點。

相機(jī)和IMU的缺點及互補(bǔ)性

9b237160-9ce0-11eb-8b86-12bb97331649.jpg

相機(jī)和IMU融合有很好的互補(bǔ)性。首先通過將IMU 估計的位姿序列和相機(jī)估計的位姿序列對齊可以估計出相機(jī)軌跡的真實尺度,而且IMU 可以很好地預(yù)測出圖像幀的位姿以及上一時刻特征點在下幀圖像的位置,提高特征跟蹤算法匹配速度和應(yīng)對快速旋轉(zhuǎn)的算法魯棒性,最后IMU 中加速度計提供的重力向量可以將估計的位置轉(zhuǎn)為實際導(dǎo)航需要的世界坐標(biāo)系中。

隨著MEMS器件的快速發(fā)展,智能手機(jī)等移動終端可以便捷地獲取IMU數(shù)據(jù)和攝像頭拍攝數(shù)據(jù),融合IMU 和視覺信息的VINS 算法可以很大程度地提高單目SLAM 算法性能,是一種低成本高性能的導(dǎo)航方案,在機(jī)器人、AR/VR 領(lǐng)域得到了很大的關(guān)注。

算法流程

9b501ac6-9ce0-11eb-8b86-12bb97331649.jpg

整個流程圖可以分解為五部分:數(shù)據(jù)預(yù)處理、初始化、局部非線性優(yōu)化、回環(huán)檢測和全局優(yōu)化。

各個模塊的主要作用是:

圖像和IMU數(shù)據(jù)預(yù)處理:對于圖像,提取特征點,利用KLT金字塔進(jìn)行光流跟蹤,為后面僅視覺初始化求解相機(jī)位姿做準(zhǔn)備。對于IMU,將IMU數(shù)據(jù)進(jìn)行預(yù)積分,得到當(dāng)前時刻的位姿、速度、旋轉(zhuǎn)角,同時計算在后端優(yōu)化中將要用到的相鄰幀間的預(yù)積分增量,及預(yù)積分的協(xié)方差矩陣和雅可比矩陣。

初始化:初始化中,首先進(jìn)行僅視覺的初始化,解算出相機(jī)的相對位姿;然后再與IMU預(yù)積分進(jìn)行對齊求解初始化參數(shù)。

局部非線性優(yōu)化:對應(yīng)流程圖中滑動窗口的視覺慣導(dǎo)非線性優(yōu)化,即將視覺約束、IMU約束放在一個大目標(biāo)函數(shù)中進(jìn)行優(yōu)化,這里的局部優(yōu)化也就是只優(yōu)化當(dāng)前幀及之前的n幀的窗口中的變量,局部非線性優(yōu)化輸出較為精確的位姿。

回環(huán)檢測:回環(huán)檢測是將前面檢測的圖像關(guān)鍵幀保存起來,當(dāng)再回到原來經(jīng)過的同一個地方,通過特征點的匹配關(guān)系,判斷是否已經(jīng)來過這里。前面提到的關(guān)鍵幀就是篩選出來的能夠記下但又避免冗余的相機(jī)幀(關(guān)鍵幀的選擇標(biāo)準(zhǔn)是當(dāng)前幀和上一幀之間的位移超過一定閾值或匹配的特征點數(shù)小于一定閾值)。

全局優(yōu)化:全局優(yōu)化是在發(fā)生回環(huán)檢測時,利用相機(jī)約束和IMU約束,再加上回環(huán)檢測的約束,進(jìn)行非線性優(yōu)化。全局優(yōu)化在局部優(yōu)化的基礎(chǔ)上進(jìn)行,輸出更為精確的位姿。

算法核心

局部優(yōu)化會用到邊緣化,僅用局部優(yōu)化精度低,全局一致性差,但是速度快,IMU利用率高;僅用全局優(yōu)化精度高,全局一致性好,但是速度慢,IMU利用率低;兩者側(cè)重點不同,所以將兩者結(jié)合,可以優(yōu)勢互補(bǔ)。

因此小編設(shè)計實驗采用局部優(yōu)化和全局優(yōu)化融合的方法。

9b869d4e-9ce0-11eb-8b86-12bb97331649.jpg

局部優(yōu)化是滑動窗口內(nèi)相機(jī)幀的優(yōu)化,全局優(yōu)化是所有關(guān)鍵幀的優(yōu)化,兩者結(jié)合會產(chǎn)生邊緣幀沖突的問題,因為局部優(yōu)化會固定滑動窗口邊緣幀,而全局優(yōu)化發(fā)生回環(huán)檢測的時候則會固定回環(huán)起點的幀。這里的改進(jìn)就是采用相對的位姿邊緣化,即邊緣化以后的點是相對于它上一時刻關(guān)鍵幀的位姿而不是全局的位姿,這樣局部優(yōu)化邊緣化相對位姿(關(guān)鍵幀),扔給全局優(yōu)化整體優(yōu)化。局部邊緣化和全局邊緣化的結(jié)合部分是關(guān)鍵幀。

相對邊緣化可以具體解釋為,相對邊緣化的參考坐標(biāo)系不再是世界坐標(biāo)系,而是與當(dāng)前幀共視且距離最近的一個關(guān)鍵幀的相機(jī)系(設(shè)為第k0幀)。視覺約束可以表示為:

9c064bca-9ce0-11eb-8b86-12bb97331649.png

區(qū)別于絕對邊緣化的視覺約束

9c22c6ce-9ce0-11eb-8b86-12bb97331649.png

實驗結(jié)果與總結(jié)

實驗一:無人機(jī)數(shù)據(jù)集上的實驗

數(shù)據(jù)集采用了歐盟機(jī)器人挑戰(zhàn)數(shù)據(jù)集(EuRoC)。EuRoC 數(shù)據(jù)集使用 Asctec Firefly 六旋翼飛行器在倉庫和房間采集數(shù)據(jù),數(shù)據(jù)集中包括以20Hz采集的相機(jī)圖像和200Hz的IMU數(shù)據(jù),以及運動真值。

實驗結(jié)果如下:

9c33366c-9ce0-11eb-8b86-12bb97331649.jpg

實驗結(jié)果可見,融合優(yōu)化的軌跡和真實軌跡很接近,而僅使用局部優(yōu)化的定位結(jié)果誤差不斷累積。

實驗二:車載數(shù)據(jù)上的實驗

該車載數(shù)據(jù)是在北京市朝陽區(qū)某小區(qū)采集的,在數(shù)據(jù)采集階段,車輛以5km/h 到 30km/h 的速度行駛,一共行駛2271m。

實驗結(jié)果如下:

9ca8ddcc-9ce0-11eb-8b86-12bb97331649.jpg

實驗結(jié)果可見,融合優(yōu)化后的定位結(jié)果明顯優(yōu)于僅使用局部優(yōu)化的定位結(jié)果,融合優(yōu)化中誤差得到及時修正。

責(zé)任編輯:lq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 模塊
    +關(guān)注

    關(guān)注

    7

    文章

    2788

    瀏覽量

    50389
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4710

    瀏覽量

    95393
  • 計算機(jī)視覺
    +關(guān)注

    關(guān)注

    9

    文章

    1709

    瀏覽量

    46779

原文標(biāo)題:計算機(jī)視覺方向簡介 | 視覺慣性里程計(VIO)

文章出處:【微信號:jiqishijue2020,微信公眾號:機(jī)器視覺自動化】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    Arm KleidiCV與OpenCV集成助力移動端計算機(jī)視覺性能優(yōu)化

    生成式及多模態(tài)人工智能 (AI) 工作負(fù)載的廣泛增長,推動了對計算機(jī)視覺 (CV) 技術(shù)日益高漲的需求。此類技術(shù)能夠解釋并分析源自現(xiàn)實世界的視覺信息,并可應(yīng)用于人臉識別、照片分類、濾鏡處理及增強(qiáng)現(xiàn)實
    的頭像 發(fā)表于 02-24 10:15 ?566次閱讀

    AR和VR中的計算機(jī)視覺

    ):計算機(jī)視覺引領(lǐng)混合現(xiàn)實體驗增強(qiáng)現(xiàn)實(AR)和虛擬現(xiàn)實(VR)正在徹底改變我們與外部世界的互動方式。即便是在引人入勝的沉浸式
    的頭像 發(fā)表于 02-08 14:29 ?1572次閱讀
    AR和VR中的<b class='flag-5'>計算機(jī)</b><b class='flag-5'>視覺</b>

    云端超級計算機(jī)使用教程

    云端超級計算機(jī)是一種基于云計算的高性能計算服務(wù),它將大量計算資源和存儲資源集中在一起,通過網(wǎng)絡(luò)向用戶提供按需的計算服務(wù)。下面,AI部落小編為
    的頭像 發(fā)表于 12-17 10:19 ?550次閱讀

    工業(yè)中使用哪種計算機(jī)?

    在工業(yè)環(huán)境中,工控機(jī)被廣泛使用。這些計算機(jī)的設(shè)計可承受極端溫度、灰塵和振動等惡劣條件。它們比標(biāo)準(zhǔn)消費類計算機(jī)更耐用、更可靠。工業(yè)計算機(jī)可控制機(jī)器、監(jiān)控流程并實時收集數(shù)據(jù)。其堅固的結(jié)構(gòu)和專業(yè)功能
    的頭像 發(fā)表于 11-29 14:07 ?712次閱讀
    工業(yè)中使用哪種<b class='flag-5'>計算機(jī)</b>?

    量子計算機(jī)與普通計算機(jī)工作原理的區(qū)別

    ? 本文介紹了量子計算機(jī)與普通計算機(jī)工作原理的區(qū)別。 量子計算是一個新興的研究領(lǐng)域,科學(xué)家們利用量子力學(xué),制造出具有革命性能力的計算機(jī)。雖然現(xiàn)在的量子
    的頭像 發(fā)表于 11-24 11:00 ?1490次閱讀
    量子<b class='flag-5'>計算機(jī)</b>與普通<b class='flag-5'>計算機(jī)</b>工作原理的區(qū)別

    【小白入門必看】一文讀懂深度學(xué)習(xí)計算機(jī)視覺技術(shù)及學(xué)習(xí)路線

    一、什么是計算機(jī)視覺?計算機(jī)視覺,其實就是教機(jī)器怎么像我們?nèi)艘粯?,用攝像頭看看周圍的世界,然后理解它。比如說,它能認(rèn)出這是個蘋果,或者那邊有輛車。除此之外,還能把拍到的照片或者視頻轉(zhuǎn)換
    的頭像 發(fā)表于 10-31 17:00 ?1245次閱讀
    【小白入門必看】一文讀懂深度學(xué)習(xí)<b class='flag-5'>計算機(jī)</b><b class='flag-5'>視覺</b>技術(shù)及學(xué)習(xí)路線

    計算機(jī)接口位于什么之間

    計算機(jī)接口是計算機(jī)硬件和軟件之間、計算機(jī)與外部設(shè)備之間以及計算機(jī)各部件之間傳輸數(shù)據(jù)、控制信息和狀態(tài)信息的硬件設(shè)備和軟件程序。它在計算機(jī)系統(tǒng)中
    的頭像 發(fā)表于 10-14 14:02 ?1320次閱讀

    計算機(jī)存儲系統(tǒng)的構(gòu)成

    計算機(jī)存儲系統(tǒng)是計算機(jī)中用于存放程序和數(shù)據(jù)的設(shè)備或部件的集合,它構(gòu)成了計算機(jī)信息處理的基礎(chǔ)。一個完整的計算機(jī)存儲系統(tǒng)通常包括多個層次的存儲器,從高速緩存(Cache)到主存儲器(Mai
    的頭像 發(fā)表于 09-26 15:25 ?2538次閱讀

    簡述計算機(jī)總線的分類

    計算機(jī)總線作為計算機(jī)系統(tǒng)中連接各個功能部件的公共通信干線,其結(jié)構(gòu)和分類對于理解計算機(jī)硬件系統(tǒng)的工作原理至關(guān)重要。以下是對計算機(jī)總線結(jié)構(gòu)和分類的詳細(xì)闡述,內(nèi)容將涵蓋總線的基本概念、內(nèi)部結(jié)
    的頭像 發(fā)表于 08-26 16:23 ?5185次閱讀

    晶體管計算機(jī)和電子管計算機(jī)有什么區(qū)別

    晶體管計算機(jī)和電子管計算機(jī)作為計算機(jī)發(fā)展史上的兩個重要階段,它們在多個方面存在顯著的區(qū)別。以下是對這兩類計算機(jī)在硬件、性能、應(yīng)用以及技術(shù)發(fā)展等方面區(qū)別的詳細(xì)闡述。
    的頭像 發(fā)表于 08-23 15:28 ?3616次閱讀

    計算機(jī)視覺有哪些優(yōu)缺點

    計算機(jī)視覺作為人工智能領(lǐng)域的一個重要分支,旨在使計算機(jī)能夠像人類一樣理解和解釋圖像和視頻中的信息。這一技術(shù)的發(fā)展不僅推動了多個行業(yè)的變革,也帶來了諸多優(yōu)勢,但同時也伴隨著一些挑戰(zhàn)和局限性。以下是對
    的頭像 發(fā)表于 08-14 09:49 ?2047次閱讀

    圖像處理器與計算機(jī)視覺有什么關(guān)系和區(qū)別

    圖像處理器與計算機(jī)視覺是兩個在圖像處理領(lǐng)域緊密相連但又有所區(qū)別的概念。它們之間的關(guān)系和區(qū)別可以從多個維度進(jìn)行探討。
    的頭像 發(fā)表于 08-14 09:36 ?1048次閱讀

    計算機(jī)視覺中的圖像融合

    在許多計算機(jī)視覺應(yīng)用中(例如機(jī)器人運動和醫(yī)學(xué)成像),需要將多個圖像的相關(guān)信息整合到單一圖像中。這種圖像融合可以提供更高的可靠性、準(zhǔn)確性和數(shù)據(jù)質(zhì)量。多視圖融合可以提高圖像分辨率,并恢復(fù)場景的三維表示
    的頭像 發(fā)表于 08-01 08:28 ?1143次閱讀
    <b class='flag-5'>計算機(jī)</b><b class='flag-5'>視覺</b>中的圖像融合

    地平線科研論文入選國際計算機(jī)視覺頂會ECCV 2024

    近日,地平線兩篇論文入選國際計算機(jī)視覺頂會ECCV 2024,自動駕駛算法技術(shù)再有新突破。
    的頭像 發(fā)表于 07-27 11:10 ?1466次閱讀
    地平線科研論文入選國際<b class='flag-5'>計算機(jī)</b><b class='flag-5'>視覺</b>頂會ECCV 2024

    計算機(jī)視覺技術(shù)的AI算法模型

    計算機(jī)視覺技術(shù)作為人工智能領(lǐng)域的一個重要分支,旨在使計算機(jī)能夠像人類一樣理解和解釋圖像及視頻中的信息。為了實現(xiàn)這一目標(biāo),計算機(jī)視覺技術(shù)依賴于
    的頭像 發(fā)表于 07-24 12:46 ?1807次閱讀