一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

NVIDIA基于物理學(xué)的神經(jīng)網(wǎng)絡(luò)

NVIDIA英偉達(dá) ? 來源:NVIDIA英偉達(dá) ? 作者:NVIDIA英偉達(dá) ? 2021-11-15 16:36 ? 次閱讀

NVIDIA 于 GTC 大會(huì)上發(fā)布的 AI 框架為工程師、科學(xué)家和研究者提供了一個(gè)可定制、易于采用的物理學(xué)工具包,使他們能夠通過建立數(shù)字孿生神經(jīng)網(wǎng)絡(luò)模型加速解決當(dāng)今一些最具挑戰(zhàn)性的問題。

NVIDIA Modulus是一個(gè)用于開發(fā)物理學(xué)-機(jī)器學(xué)習(xí)模型的框架,它能夠?yàn)槿狈?AI 專業(yè)知識(shí),但對(duì) AI 和物理驅(qū)動(dòng)型數(shù)字孿生功能的需求快速增長的眾多領(lǐng)域提供支持,例如蛋白質(zhì)工程和氣候科學(xué)領(lǐng)域。

數(shù)字孿生已成為解決從分子層面(如藥物研發(fā))到全球挑戰(zhàn)(如氣候變化)等各種問題的有力工具。NVIDIA Modulus 為科學(xué)家所提供的框架能夠?yàn)閺?fù)雜、動(dòng)態(tài)的系統(tǒng)構(gòu)建高精度數(shù)字復(fù)制品,從而推動(dòng)各行業(yè)的新一代技術(shù)突破。

基于物理學(xué)的神經(jīng)網(wǎng)絡(luò)

Modulus 訓(xùn)練神經(jīng)網(wǎng)絡(luò)使用基本的物理學(xué)定律模擬各領(lǐng)域中復(fù)雜系統(tǒng)的行為。從工業(yè)用例到氣候科學(xué),該代理模型可用于各種數(shù)字孿生應(yīng)用。

與大多數(shù)基于 AI 的方法一樣,Modulus 內(nèi)置一個(gè)幫助管理觀察或模擬數(shù)據(jù)的數(shù)據(jù)準(zhǔn)備模塊。它還能解釋它所模擬的系統(tǒng)的幾何圖形以及輸入幾何圖形所表示的空間的顯式參數(shù)。

Modulus 的關(guān)鍵工作流程和要素包括:

采樣計(jì)劃器:使用戶能夠選擇一種方法(如準(zhǔn)隨機(jī)采樣或重要性采樣)來提高被訓(xùn)練模型的收斂性和準(zhǔn)確性。

基于 Python 的 API:采取象征性管理偏微分方程并構(gòu)建基于物理學(xué)的神經(jīng)網(wǎng)絡(luò)。

精選層和網(wǎng)絡(luò)架構(gòu):經(jīng)證明能夠有效解決物理學(xué)問題。

物理學(xué)-機(jī)器學(xué)習(xí)引擎:使用這些輸入來訓(xùn)練模型。所訓(xùn)練的模型能夠使用 PyTorch 與 TensorFlow、使用 cuDNN 實(shí)現(xiàn) GPU 加速并且使用 NVIDIA Magnum IO 實(shí)現(xiàn)多 GPU 和多節(jié)點(diǎn)擴(kuò)展。

快速周轉(zhuǎn)時(shí)間

GPU 加速工具包實(shí)現(xiàn)快速周轉(zhuǎn),補(bǔ)充傳統(tǒng)的分析并實(shí)現(xiàn)更快的洞察。Modulus 使用戶通過評(píng)估能夠改變其參數(shù)的影響來探索系統(tǒng)的不同配置和場景。

基于高性能 TensorFlow 的 Modulus 實(shí)現(xiàn)使用 XLA 優(yōu)化性能。XLA 是一個(gè)用于加速 TensorFlow 模型的特定領(lǐng)域線性代數(shù)編譯器。它使用 Horovod 分布式深度學(xué)習(xí)訓(xùn)練框架實(shí)現(xiàn)多 GPU 擴(kuò)展。

在完成模型訓(xùn)練后,Modulus 可以進(jìn)行近乎實(shí)時(shí)的推理或互動(dòng)式推理。相比之下,傳統(tǒng)的分析每次運(yùn)行時(shí)都要進(jìn)行評(píng)估,而且每次評(píng)估的計(jì)算成本很高。

易于采用

Modulus 可定制并且易于采用。它能提供用于實(shí)現(xiàn)新物理學(xué)和幾何學(xué)的 API。Modulus 在設(shè)計(jì)上可以使那些剛開始使用 AI 數(shù)字孿生應(yīng)用的人能夠快速將其用于工作。

該框架包括計(jì)算流體力學(xué)、熱傳導(dǎo)等入門分步教程。它還為應(yīng)用領(lǐng)域提供了一個(gè)不斷增長的實(shí)現(xiàn)列表,如湍流建模、瞬態(tài)波方程、納維-斯托克斯方程、電磁學(xué)領(lǐng)域的麥克斯韋方程、反問題和其他多物理場問題。

責(zé)任編輯:haq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • NVIDIA
    +關(guān)注

    關(guān)注

    14

    文章

    5193

    瀏覽量

    105484
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    33628

    瀏覽量

    274347
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8481

    瀏覽量

    133876

原文標(biāo)題:GTC21 | NVIDIA 創(chuàng)建 AI 學(xué)習(xí)物理框架

文章出處:【微信號(hào):NVIDIA_China,微信公眾號(hào):NVIDIA英偉達(dá)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    NVIDIA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)渲染技術(shù)的突破性增強(qiáng)功能

    近日,NVIDIA 宣布了 NVIDIA RTX 神經(jīng)網(wǎng)絡(luò)渲染技術(shù)的突破性增強(qiáng)功能。NVIDIA 與微軟合作,將在 4 月的 Microsoft DirectX 預(yù)覽版中增加
    的頭像 發(fā)表于 04-07 11:33 ?261次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)在多個(gè)方面存在顯著差異,以下是對(duì)兩者的比較: 一、結(jié)構(gòu)特點(diǎn) BP神經(jīng)網(wǎng)絡(luò) : BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:53 ?395次閱讀

    鎖相放大器在物理學(xué)中的應(yīng)用

    物理學(xué)的研究中,信號(hào)的精確測量與分析一直是科學(xué)實(shí)驗(yàn)的關(guān)鍵。隨著技術(shù)的發(fā)展,許多實(shí)驗(yàn)中涉及到的信號(hào)越來越微弱,傳統(tǒng)的儀器設(shè)備很難直接檢測這些信號(hào)。如何有效地提取微弱信號(hào),特別是從噪聲中區(qū)分出有用信號(hào)
    的頭像 發(fā)表于 02-11 16:35 ?319次閱讀
    鎖相放大器在<b class='flag-5'>物理學(xué)</b>中的應(yīng)用

    神經(jīng)網(wǎng)絡(luò)理論研究的物理學(xué)思想介紹

    本文主要介紹神經(jīng)網(wǎng)絡(luò)理論研究的物理學(xué)思想 神經(jīng)網(wǎng)絡(luò)在當(dāng)今人工智能研究和應(yīng)用中發(fā)揮著不可替代的作用。它是人類在理解自我(大腦)的過程中產(chǎn)生的副產(chǎn)品,以此副產(chǎn)品,人類希望建造一個(gè)機(jī)器智能來實(shí)現(xiàn)機(jī)器文明
    的頭像 發(fā)表于 01-16 11:16 ?722次閱讀
    <b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>理論研究的<b class='flag-5'>物理學(xué)</b>思想介紹

    一文詳解物理信息神經(jīng)網(wǎng)絡(luò)

    物理信息神經(jīng)網(wǎng)絡(luò) (PINN) 是一種神經(jīng)網(wǎng)絡(luò),它將微分方程描述的物理定律納入其損失函數(shù)中,以引導(dǎo)學(xué)習(xí)過程得出更符合基本物理定律的解。
    的頭像 發(fā)表于 12-05 16:50 ?6052次閱讀
    一文詳解<b class='flag-5'>物理</b>信息<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>

    BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機(jī)器學(xué)習(xí)領(lǐng)域
    的頭像 發(fā)表于 07-10 15:24 ?2097次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個(gè)基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及未來發(fā)展等多個(gè)方面,詳細(xì)闡述BP
    的頭像 發(fā)表于 07-10 15:20 ?1911次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時(shí)間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)
    的頭像 發(fā)表于 07-05 09:52 ?868次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

    遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)實(shí)際上是同一個(gè)概念,只是不同的翻譯方式
    的頭像 發(fā)表于 07-04 14:54 ?1289次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是深度學(xué)習(xí)領(lǐng)域中兩種非常重要的神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 14:24 ?1810次閱讀

    深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在探討深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(luò)(通常指傳統(tǒng)神經(jīng)網(wǎng)絡(luò)或前向神經(jīng)網(wǎng)絡(luò))的區(qū)別時(shí),我們需要從多個(gè)維度進(jìn)行深入分析。這些維度包括
    的頭像 發(fā)表于 07-04 13:20 ?1519次閱讀

    反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network,簡稱BP神經(jīng)網(wǎng)絡(luò))是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法來調(diào)整網(wǎng)絡(luò)中的權(quán)重和偏置,以達(dá)到最小化誤差的
    的頭像 發(fā)表于 07-03 11:00 ?1067次閱讀

    bp神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)是一種常見的前饋神經(jīng)網(wǎng)絡(luò),它使用反向傳播算法來訓(xùn)練網(wǎng)絡(luò)。雖然BP神經(jīng)網(wǎng)絡(luò)在某些方面與深度
    的頭像 發(fā)表于 07-03 10:14 ?1186次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經(jīng)網(wǎng)絡(luò),它們?cè)?/div>
    的頭像 發(fā)表于 07-03 10:12 ?2205次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?5666次閱讀