一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

面板AOI檢測(cè)之ROI自動(dòng)提取算法解析

機(jī)器視覺(jué) ? 來(lái)源:機(jī)器視覺(jué) ? 作者:機(jī)器視覺(jué) ? 2022-11-15 15:53 ? 次閱讀

面板AOI檢測(cè)之ROI自動(dòng)提取算法解析 -智空 act視覺(jué)系統(tǒng)設(shè)計(jì)

液晶面板、OLED面板的AOI自動(dòng)缺陷檢測(cè)設(shè)備,核心算法第一步就是ROI(感興趣區(qū)域)自動(dòng)提取。

什么是ROI自動(dòng)提取技術(shù)?

如下圖所示,光學(xué)相機(jī)獲取到的原始圖像,藍(lán)框部分為AOI感興趣的面板檢測(cè)區(qū)域,其他部分,均為無(wú)效區(qū)域,需要將AOI部分摳圖,進(jìn)行接下來(lái)的缺陷檢測(cè)步驟。

60126a52-6432-11ed-8abf-dac502259ad0.png

難度究竟在哪呢?

對(duì)于部分面板產(chǎn)品,紋理?xiàng)l紋現(xiàn)象較多,形成了類(lèi)似摩爾效應(yīng),嚴(yán)重干擾了ROI的自動(dòng)提取,很容易造成分割失敗。

60303028-6432-11ed-8abf-dac502259ad0.png

(PS. 這么復(fù)雜的紋理,去提取ROI感興趣邊緣,你說(shuō)難不難?)

展示一下這個(gè)圖片放大后的邊緣細(xì)節(jié),你就知道,壓根沒(méi)法用常規(guī)的邊緣提取...

6061492e-6432-11ed-8abf-dac502259ad0.png

優(yōu)秀的自動(dòng)ROI技術(shù)價(jià)值體現(xiàn)在哪里?

1)對(duì)產(chǎn)品對(duì)應(yīng)的載具對(duì)位精度要求降低,減少載具精確對(duì)位產(chǎn)生的機(jī)構(gòu)成本;(實(shí)在的降成本,劃重點(diǎn)1)

2)對(duì)光學(xué)相機(jī)水平面的偏轉(zhuǎn)要求降低,可以允許相機(jī)在水平方向,有一定的旋轉(zhuǎn)Buffer空間,不再要求嚴(yán)格的水平校準(zhǔn),進(jìn)一步降低相機(jī)的水平調(diào)校機(jī)構(gòu)成本;(實(shí)在的降成本,劃重點(diǎn)2)

3)不用人為做ROI區(qū)域的手動(dòng)設(shè)定,減少人為干預(yù),提高自動(dòng)化程度;(PK對(duì)手)

4)為后段的AOI缺陷檢測(cè)算法,做好必須且必要的摳圖鋪墊,減輕算法對(duì)全局圖像處理的載荷負(fù)擔(dān),降低硬件資源消耗和TT。(內(nèi)部矛盾化解)

高紋理對(duì)應(yīng)的ROI自動(dòng)提取技術(shù),具體是怎么做的?

1)Sobel_dir 邊緣提取

607fbbfc-6432-11ed-8abf-dac502259ad0.png

注意,這里的Sobel提取的是邊緣相位,不是邊緣振幅。(敲黑板)

2)閾值分割

60a58aee-6432-11ed-8abf-dac502259ad0.png

為了增強(qiáng)ROI算法的自適應(yīng)性,一類(lèi)產(chǎn)品機(jī)種對(duì)應(yīng)一套參數(shù),不頻繁修改,將閾值范圍設(shè)為0~250。幾乎除了純白色255,其他區(qū)域都進(jìn)行了閾值分割!

3)區(qū)域連接、填充空洞及選擇區(qū)域

60c0a464-6432-11ed-8abf-dac502259ad0.png

區(qū)域連接和填充空洞,比較好理解,是指閾值分割后區(qū)域的相關(guān)處理,為的是更好的服務(wù)于區(qū)域選擇。通過(guò)區(qū)域選擇函數(shù)select_shape,以及面積特征,快速的分割出候選的ROI面板區(qū)域。其中,面積特征可以選擇大于總體圖像的1%的區(qū)域,此參數(shù)比較好設(shè)置。

4) 區(qū)域最小外接矩形

60f8224a-6432-11ed-8abf-dac502259ad0.png

由于面板的矩形度較好,圖像分割出的外輪廓與最小外接矩形高度重合。

5)ROI區(qū)域提取

63f8f3d4-6432-11ed-8abf-dac502259ad0.png

至此,從原圖摳出ROI感興趣區(qū)域,你以為工作結(jié)束了么..

然,并不是,請(qǐng)繼續(xù)陪我搬磚。(因?yàn)槿毕輽z測(cè)算法對(duì)邊緣部分敏感,上圖的ROI提取區(qū)域,包含了一些黑色無(wú)效區(qū)域,容易對(duì)后續(xù)的缺陷分割造成誤判)

6)ROI區(qū)域旋轉(zhuǎn)、拆減

645a59ee-6432-11ed-8abf-dac502259ad0.png

計(jì)算外接矩形的Phi偏轉(zhuǎn)角度,然后反向旋轉(zhuǎn)Phi角度,即可將偏轉(zhuǎn)(歪的)圖像,進(jìn)行校正。一般四周邊緣的黑色部分像素距離是固定的,裁剪黑色部分后,就可以得到純凈的、校正后的ROI區(qū)域!如上圖所示。

至此,高紋理圖像的自動(dòng)ROI提取完畢。

理論學(xué)習(xí)深度

理論學(xué)習(xí)深度學(xué)習(xí)是讓不同平臺(tái)的多個(gè)學(xué)科之間無(wú)法互相配合地執(zhí)行,在不同理論上都能看到了深度學(xué)習(xí)的學(xué)習(xí)。通過(guò)這系列理論來(lái)改善計(jì)算機(jī)網(wǎng)絡(luò)模型的發(fā)展,讓計(jì)算機(jī)技術(shù)在知識(shí)中的每一個(gè)小計(jì)算機(jī)技術(shù)構(gòu)成了一個(gè)結(jié)構(gòu),計(jì)算機(jī)視覺(jué)的結(jié)構(gòu)需要在一定的層面,并給出了一套復(fù)雜的學(xué)習(xí)。計(jì)算機(jī)技術(shù)在包含數(shù)字視覺(jué)預(yù)處理、語(yǔ)音、自然語(yǔ)言處理、大數(shù)據(jù)等多個(gè)領(lǐng)域中的復(fù)雜結(jié)構(gòu),并以一定的技術(shù)為核心,通過(guò)多模態(tài)聚類(lèi)來(lái)描述具體的計(jì)算機(jī)系。

計(jì)算機(jī)視覺(jué)是通過(guò)采集特征值和方法,生成具有實(shí)時(shí)獲取數(shù)據(jù)的框架,并且從質(zhì)編處介紹如何使用數(shù)據(jù)挖掘、疾病自動(dòng)診斷和經(jīng)濟(jì)評(píng)價(jià)。學(xué)習(xí)是通過(guò)結(jié)合決策所發(fā)現(xiàn)的大規(guī)模樣本對(duì)于大型模型和計(jì)算機(jī)視覺(jué)領(lǐng)域進(jìn)行聚合,從而得到研究對(duì)象的大規(guī)?;A(chǔ)。M域感知域感知域感知,是指用于識(shí)別數(shù)據(jù)流生成的機(jī)器學(xué)習(xí)、深度學(xué)習(xí)算法,可以讓過(guò)域感知浮點(diǎn)、不斷優(yōu)

The Imaging Source 相機(jī)幫助降低無(wú)塵室受污染的機(jī)率--機(jī)器視覺(jué)網(wǎng)

晶圓半導(dǎo)體制程必須嚴(yán)密監(jiān)控且無(wú)塵的工作環(huán)境中進(jìn)行,只要有一點(diǎn)污染可能就會(huì)影響整批晶圓,影響產(chǎn)能,現(xiàn)今半導(dǎo)體無(wú)塵室中配備多臺(tái)自主機(jī)器人多進(jìn)行搬運(yùn)工作以減少人工帶來(lái)的污染。The Imaging Source及經(jīng)銷(xiāo)商與晶圓廠合作,運(yùn)用機(jī)器視覺(jué)系統(tǒng)的方式進(jìn)行檢測(cè)及數(shù)值記錄回報(bào),大幅降低無(wú)塵室受污染的機(jī)率,也令檢測(cè)過(guò)程更有效率。

無(wú)塵室自主機(jī)器人臟污檢測(cè)

晶圓片價(jià)格昂貴且價(jià)值高,在半導(dǎo)體無(wú)塵室中,晶圓的制程小劃分為好幾個(gè)階段與步驟,就像生產(chǎn)流水線(xiàn),每個(gè)階段都有自己的工作站,而因?yàn)榫A脆弱易損,在工作站間運(yùn)送晶圓變成了很大的課題,現(xiàn)大部分的半導(dǎo)體無(wú)塵室導(dǎo)入自動(dòng)化系統(tǒng),利用自主機(jī)器人的靈敏度來(lái)提取并運(yùn)送晶圓至下一個(gè)工作站,搭配工作人員進(jìn)行機(jī)臺(tái)設(shè)定及檢

機(jī)器視覺(jué)系統(tǒng)中光源的重要性--機(jī)器視覺(jué)網(wǎng)

64f50304-6432-11ed-8abf-dac502259ad0.jpg

光源

機(jī)器視覺(jué)系統(tǒng)主要由三部分組成:圖像的獲取、圖像的處理和分析、輸出或顯示。而圖像的獲取是機(jī)器視覺(jué)的核心,圖像的獲取系統(tǒng)則是由光源、鏡頭、相機(jī)三部分組成。光源的選取與打光合理與否可直接影響至少30%的成像質(zhì)量。所以光源是機(jī)器視覺(jué)系統(tǒng)中非常重要的一部分。

作用

通過(guò)適當(dāng)?shù)墓庠凑彰髟O(shè)計(jì),使圖像中的目標(biāo)信息與背景信息得到最佳分離,可以大大降低圖像處理算法分割、識(shí)別的難度,同時(shí)提高系統(tǒng)的定位、測(cè)量精度,使系統(tǒng)的可靠性和綜合性能得到提高。反之,如果光源設(shè)計(jì)不當(dāng),會(huì)導(dǎo)致在圖像處理算法設(shè)計(jì)和成像系統(tǒng)設(shè)計(jì)中事倍功半。因此,光源及光學(xué)系統(tǒng)設(shè)計(jì)的成敗是決定系統(tǒng)成敗的首要因素。

照亮目標(biāo),提高目標(biāo)亮度;突出測(cè)量特征,簡(jiǎn)化圖像處理算法;克服環(huán)境光的干擾,保證圖

優(yōu)傲機(jī)器人全球員工突破千人大關(guān) 中國(guó)團(tuán)隊(duì)及本地生態(tài)進(jìn)一步發(fā)展,持續(xù)賦能制造業(yè)自動(dòng)化轉(zhuǎn)型升級(jí)

優(yōu)傲機(jī)器人全球員工突破千人大關(guān) 中國(guó)團(tuán)隊(duì)及本地生態(tài)進(jìn)一步發(fā)展,持續(xù)賦能制造業(yè)自動(dòng)化轉(zhuǎn)型升級(jí)

丹麥協(xié)作機(jī)器人制造商優(yōu)傲機(jī)器人(以下簡(jiǎn)稱(chēng)“優(yōu)傲”)宣布,經(jīng)過(guò)持續(xù)發(fā)展,其全球員工人數(shù)突破1000人大關(guān)。在千禧年后創(chuàng)立的所有丹麥企業(yè)中,僅有幾家目前達(dá)成了這一里程碑。

【優(yōu)傲丹麥總部】

2005年,南丹麥大學(xué)三位年輕的研究員Esben ?stergaard,Kasper St?y和Kristian Kassow有感于當(dāng)時(shí)的機(jī)器人實(shí)在過(guò)于笨重、昂貴、復(fù)雜,于是在大學(xué)的地下室創(chuàng)辦了優(yōu)傲,希望打造更靈活、安全、易于安裝和編程的機(jī)器人。2008年,優(yōu)傲率先推出全球首臺(tái)商用協(xié)作機(jī)器人UR5,隨后開(kāi)發(fā)了一系列產(chǎn)品組合,逐步成長(zhǎng)為全球協(xié)作機(jī)器人市場(chǎng)的領(lǐng)先企業(yè),其總部所在地丹麥歐登塞也已成為全球領(lǐng)先的機(jī)器人研發(fā)中心之一。如今,優(yōu)傲

.

移動(dòng)機(jī)器人需求強(qiáng)勁,未來(lái)五年復(fù)合增長(zhǎng)率將達(dá)30%

數(shù)據(jù)顯示,我國(guó)制造業(yè)增加值從2012年的16.98萬(wàn)億元增加到2021年的31.4萬(wàn)億元,占全球比重從22.5%提高到了30%,持續(xù)保持世界第一制造大國(guó)的地位。

龐大的制造業(yè),也孕育出了全球最龐大的物流需求,國(guó)家郵政局?jǐn)?shù)據(jù)顯示,2021年全國(guó)快遞量突破了1000億件,是5年前的1.7倍,面對(duì)數(shù)量眾多的快遞包裹量,依靠人手進(jìn)行分揀、包裝、搬運(yùn)根本難以應(yīng)對(duì),因此應(yīng)用移動(dòng)機(jī)器人打造智能物流系統(tǒng)就成為了許多企業(yè)的選擇。

如今在許許多多的物流倉(cāng)庫(kù)和制造工廠中,正上演著一場(chǎng)史無(wú)前例的物流變革,在整齊切割的智能倉(cāng)庫(kù)中,靈活往返運(yùn)輸貨物的是一臺(tái)臺(tái)移動(dòng)機(jī)器人,從商品入庫(kù)到分揀、出庫(kù),都充斥著它們的身影,一個(gè)龐大的倉(cāng)庫(kù),往往只需要少數(shù)幾個(gè)員工。

移動(dòng)機(jī)器人助力企業(yè)降本增效

一文了解prompt learning在計(jì)算機(jī)視覺(jué)領(lǐng)域進(jìn)展

本文是對(duì)prompt Learning在CV領(lǐng)域的文獻(xiàn)總結(jié),讀者閱讀完全文會(huì)對(duì)prompt learning在CV的各種用法有所了解,希望能對(duì)大家未來(lái)研究工作有所啟發(fā)。

CLIP(Learning Transferable Visual Models From Natural Language Supervision)

CLIP是OpenAI的一個(gè)非常經(jīng)典的工作,從網(wǎng)上收集了4億個(gè)圖片文本對(duì)用于訓(xùn)練,最后進(jìn)行zero-shot transfer到下游任務(wù)達(dá)到了非常好的效果,主要流程如下:

在訓(xùn)練階段,文本會(huì)通過(guò)Text Encoder(Transformer)編碼成一些文本Embedding向量,圖像會(huì)通過(guò)Image Encoder(ResNet50或VIT)編碼成一些圖像Embedding向量,然后將文

10億元砸向研發(fā),小冰到底要搞什么?

意外。

今年科技圈的“寒冬”大潮還在持續(xù)上演著,而有這么一則消息卻與這股大勢(shì)“背道而馳”:

小冰公司,完成10億元新一輪融資。

這家公司,很多友友們并不陌生。

因?yàn)榻鼛啄瓿鲎运业谋姸嗵摂M人,經(jīng)?;钴S出現(xiàn)在人們的熱議話(huà)題中。

而隨著這次最新消息的曝光,新融資的歸去來(lái),也成了外界最關(guān)心的問(wèn)題,特別還是大環(huán)境不好的當(dāng)前。

對(duì)此,小冰公司在官宣中也直接做了解答:

用于加速AI Being小冰框架技術(shù)研發(fā)。

未來(lái)一個(gè)季度內(nèi),完成框架中正在運(yùn)行的30萬(wàn)名虛擬員工(AI Being Employee)的升級(jí)。

更進(jìn)一步的,小冰公司更是直言了這些動(dòng)作背后的一個(gè)“小目標(biāo)”——

推動(dòng)虛擬員工的普及。

至此,新的疑問(wèn)也接

蘋(píng)果頭顯團(tuán)隊(duì)放出多個(gè)招聘:面向AR/VR應(yīng)用開(kāi)發(fā),看重游戲、虛擬效果方面能力

硅谷寒氣逼人,但是蘋(píng)果頭顯團(tuán)隊(duì)卻是熱火朝天。

剛剛過(guò)去的周末,他們一口氣發(fā)布3個(gè)崗位招聘,全部面向AR/VR應(yīng)用開(kāi)發(fā)。

還被曝出有兩位重磅人員加盟,同樣擅長(zhǎng)應(yīng)用領(lǐng)域。

其一曾在蘋(píng)果自動(dòng)駕駛部門(mén)任職,擅長(zhǎng)醫(yī)療健康、機(jī)器人方面應(yīng)用開(kāi)發(fā)。

另一位則是蘋(píng)果內(nèi)部高級(jí)工程主管,供職超過(guò)20年,此前一直負(fù)責(zé)Pages、Keynote等蘋(píng)果基本應(yīng)用的開(kāi)發(fā)。

此外還有消息稱(chēng),一家MR移動(dòng)游戲工作室的兩位聯(lián)合創(chuàng)始人,都被蘋(píng)果挖來(lái)做AR/VR內(nèi)容了。

種種現(xiàn)象來(lái)看,蘋(píng)果憋了很久的MR頭顯,這回真的快來(lái)了。

知名蘋(píng)果爆料人Mark Gurman透露,這一重磅產(chǎn)品或在2023年發(fā)布。

它將具備哪些能力?

透過(guò)如上招聘動(dòng)向,或許就能

審核編輯 :李倩

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4682

    瀏覽量

    94372
  • 機(jī)器視覺(jué)
    +關(guān)注

    關(guān)注

    163

    文章

    4487

    瀏覽量

    121877

原文標(biāo)題:面板AOI檢測(cè)之ROI自動(dòng)提取算法解析/機(jī)器視覺(jué)系統(tǒng)中光源的重要性

文章出處:【微信號(hào):www_51qudong_com,微信公眾號(hào):機(jī)器視覺(jué)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    99.99%良率的秘密!華頡AOI如何破解汽車(chē)電子Pin針檢測(cè)難題?

    在新能源汽車(chē)、智能駕駛快速發(fā)展的今天,車(chē)載芯片的Pin針間距已縮小至0.2mm級(jí),而檢測(cè)精度必須達(dá)到±3μm,否則可能導(dǎo)致電池故障、系統(tǒng)失靈等致命風(fēng)險(xiǎn)。華頡科技作為國(guó)產(chǎn)智能檢測(cè)領(lǐng)域的領(lǐng)軍企業(yè),通過(guò)自主研發(fā)的高精度AOI光學(xué)方案,
    的頭像 發(fā)表于 03-28 17:34 ?1064次閱讀
    99.99%良率的秘密!華頡<b class='flag-5'>AOI</b>如何破解汽車(chē)電子Pin針<b class='flag-5'>檢測(cè)</b>難題?

    線(xiàn)路檢測(cè)的終極保障!捷多邦AOI自動(dòng)光學(xué)檢測(cè)如何提升PCB質(zhì)量?

    、嚴(yán)格質(zhì)量檢測(cè)、精選材料、高精度加工等方式,將PCB故障率控制在行業(yè)平均水平的一半以下,為客戶(hù)提供更穩(wěn)定、更耐用的電路板。 AOI自動(dòng)光學(xué)檢測(cè):捷多邦如何保證每條線(xiàn)路無(wú)誤? 在高端電子
    的頭像 發(fā)表于 03-21 17:28 ?224次閱讀

    從定位到質(zhì)檢:傳感器如何重塑FPC裁切與AOI檢測(cè)的精度邊界?

    隨著3C電子產(chǎn)品向輕薄化、高集成化發(fā)展,柔性電路板(FPC)裁切機(jī)和自動(dòng)光學(xué)檢測(cè)AOI)設(shè)備在制造過(guò)程中對(duì)傳感器的依賴(lài)日益增強(qiáng)。通過(guò)傳感器技術(shù)我們可以實(shí)現(xiàn)高精度測(cè)量、實(shí)時(shí)反饋和非接觸檢測(cè)
    的頭像 發(fā)表于 03-04 07:34 ?379次閱讀
    從定位到質(zhì)檢:傳感器如何重塑FPC裁切與<b class='flag-5'>AOI</b><b class='flag-5'>檢測(cè)</b>的精度邊界?

    中偉視界:AI防爆型攝像機(jī)有哪些常用算法算法解析與并行運(yùn)行能力介紹

    AI防爆型攝像機(jī)通過(guò)多種智能算法,如目標(biāo)檢測(cè)、人體識(shí)別、行為識(shí)別等,具備了對(duì)監(jiān)控場(chǎng)景的深度解析與高效管理能力。它能實(shí)時(shí)監(jiān)測(cè)潛在危險(xiǎn)并預(yù)警,在無(wú)網(wǎng)無(wú)電環(huán)境中可獨(dú)立運(yùn)行,充分展示了其強(qiáng)大的并行算法
    的頭像 發(fā)表于 02-27 10:41 ?395次閱讀
    中偉視界:AI防爆型攝像機(jī)有哪些常用<b class='flag-5'>算法</b><b class='flag-5'>之</b><b class='flag-5'>算法</b><b class='flag-5'>解析</b>與并行運(yùn)行能力介紹

    人臉識(shí)別技術(shù)的算法原理解析

    基于人的面部特征,通過(guò)計(jì)算機(jī)算法來(lái)識(shí)別或驗(yàn)證個(gè)人身份。這項(xiàng)技術(shù)通常包括以下幾個(gè)步驟:人臉檢測(cè)、特征提取、特征比對(duì)和身份確認(rèn)。 2. 人臉檢測(cè) 人臉
    的頭像 發(fā)表于 02-06 17:50 ?1170次閱讀

    回流焊時(shí)光學(xué)檢測(cè)方法

    回流焊時(shí)光學(xué)檢測(cè)方法主要依賴(lài)于自動(dòng)光學(xué)檢測(cè)AOI)技術(shù)。以下是對(duì)回流焊時(shí)光學(xué)檢測(cè)方法的介紹: 一、AO
    的頭像 發(fā)表于 01-20 09:33 ?528次閱讀

    自動(dòng)化創(chuàng)建UI并解析數(shù)據(jù)

    /后面板會(huì)卡頓。 ******該示例較粗糙旨在拋磚引玉,希望有高人指點(diǎn),優(yōu)化自動(dòng)化創(chuàng)建UI并解析內(nèi)容,給出更佳的方案。
    發(fā)表于 12-10 08:41

    自動(dòng)化創(chuàng)建UI并解析數(shù)據(jù)

    ,需要加判斷; 4.程序運(yùn)行時(shí)切換前面板/后面板會(huì)卡頓。 ******該示例較粗糙旨在拋磚引玉,希望有高人指點(diǎn),優(yōu)化自動(dòng)化創(chuàng)建UI并解析內(nèi)容,給出更佳的方案。
    發(fā)表于 11-29 11:26

    AIGC算法解析及其發(fā)展趨勢(shì)

    AIGC(Artificial Intelligence Generated Content,人工智能生成內(nèi)容)算法是當(dāng)今前沿科技的代表,它利用人工智能技術(shù)和算法自動(dòng)生成各種形式的內(nèi)容。 一
    的頭像 發(fā)表于 10-25 15:35 ?1026次閱讀

    自動(dòng)光學(xué)檢測(cè)(AOI)技術(shù)在PCBA加工中的關(guān)鍵作用

    一站式PCBA智造廠家今天為大家講講AOI光學(xué)檢測(cè)在PCB制造中有什么作用?自動(dòng)光學(xué)檢測(cè)(AOI)在PCBA加工中的作用。隨著電子制造行業(yè)的
    的頭像 發(fā)表于 10-09 09:13 ?795次閱讀
    <b class='flag-5'>自動(dòng)</b>光學(xué)<b class='flag-5'>檢測(cè)</b>(<b class='flag-5'>AOI</b>)技術(shù)在PCBA加工中的關(guān)鍵作用

    iFocus 自動(dòng)對(duì)焦模塊,輕松解決高倍率自動(dòng)光學(xué)檢測(cè)難題

    iFocus自動(dòng)對(duì)焦模塊iFocus實(shí)時(shí)自動(dòng)對(duì)焦模塊是51camera的合作廠商iCore的明星產(chǎn)品。它可實(shí)時(shí)自動(dòng)對(duì)焦,主要應(yīng)用于高倍率光學(xué)系統(tǒng)的自動(dòng)光學(xué)
    的頭像 發(fā)表于 09-15 08:12 ?990次閱讀
    iFocus <b class='flag-5'>自動(dòng)</b>對(duì)焦模塊,輕松解決高倍率<b class='flag-5'>自動(dòng)</b>光學(xué)<b class='flag-5'>檢測(cè)</b>難題

    AOI光學(xué)檢測(cè)設(shè)備數(shù)據(jù)采集物聯(lián)網(wǎng)解決方案

    AOI設(shè)備通過(guò)高分辨率攝像頭和先進(jìn)的圖像處理算法,自動(dòng)檢測(cè)電子產(chǎn)品中的缺陷,如焊點(diǎn)不良、元件缺失等。它不僅提高了生產(chǎn)效率,還大大減少了人為誤差,確保了產(chǎn)品的高質(zhì)量。然而,傳統(tǒng)的AOI設(shè)
    的頭像 發(fā)表于 07-08 13:35 ?675次閱讀
    <b class='flag-5'>AOI</b>光學(xué)<b class='flag-5'>檢測(cè)</b>設(shè)備數(shù)據(jù)采集物聯(lián)網(wǎng)解決方案

    基于FPGA的攝像頭心率檢測(cè)裝置設(shè)計(jì)

    采用 Adaboost 面部檢測(cè)算法從每一幀視頻中識(shí)別出受測(cè)者的面部,并在面部區(qū)域中提取額頭部分作為 roi 區(qū)域。Adaboost 面部檢測(cè)算法識(shí)別準(zhǔn)確率高、識(shí)別速度快、能夠較好地滿(mǎn)
    發(fā)表于 07-01 17:58

    新一代智能插件AOI用極速編程顛覆了傳統(tǒng)AOI認(rèn)知

    為了解決傳統(tǒng)AOI自動(dòng)光學(xué)檢測(cè)設(shè)備存在的問(wèn)題,新一代AI視覺(jué)前沿技術(shù)公司將神經(jīng)網(wǎng)路深度學(xué)習(xí)算法應(yīng)用于AOI中,匠心打造了D系列產(chǎn)品,用極速編
    的頭像 發(fā)表于 06-25 15:00 ?1216次閱讀
    新一代智能插件<b class='flag-5'>AOI</b>用極速編程顛覆了傳統(tǒng)<b class='flag-5'>AOI</b>認(rèn)知

    咳嗽檢測(cè)深度神經(jīng)網(wǎng)絡(luò)算法

    具體的軟硬件實(shí)現(xiàn)點(diǎn)擊 http://mcu-ai.com/ MCU-AI技術(shù)網(wǎng)頁(yè)_MCU-AI 咳嗽檢測(cè)是一種很有前途的檢測(cè)呼吸道疾病各種病理嚴(yán)重程度的技術(shù)。自動(dòng)咳嗽檢測(cè)系統(tǒng)的開(kāi)發(fā)將成
    發(fā)表于 05-15 19:05