一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

機(jī)器學(xué)習(xí)算法匯總 機(jī)器學(xué)習(xí)算法分類 機(jī)器學(xué)習(xí)算法模型

工程師鄧生 ? 來(lái)源:未知 ? 作者:劉芹 ? 2023-08-17 16:11 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

機(jī)器學(xué)習(xí)算法匯總 機(jī)器學(xué)習(xí)算法分類 機(jī)器學(xué)習(xí)算法模型

機(jī)器學(xué)習(xí)是人工智能的分支之一,它通過(guò)分析和識(shí)別數(shù)據(jù)模式,學(xué)習(xí)從中提取規(guī)律,并用于未來(lái)的決策和預(yù)測(cè)。在機(jī)器學(xué)習(xí)中,算法是最基本的組成部分之一。算法是解決具體問(wèn)題的一系列步驟,機(jī)器學(xué)習(xí)的算法被設(shè)計(jì)用于從大量的數(shù)據(jù)中自動(dòng)學(xué)習(xí)并不斷改進(jìn)自身的性能。本文將為大家介紹機(jī)器學(xué)習(xí)算法匯總和分類,以及常用的機(jī)器學(xué)習(xí)算法模型。

機(jī)器學(xué)習(xí)算法匯總

機(jī)器學(xué)習(xí)算法的類型繁多,主要分為無(wú)監(jiān)督學(xué)習(xí)、監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)三種。無(wú)監(jiān)督學(xué)習(xí)是指沒(méi)有明確的目標(biāo)變量,機(jī)器學(xué)習(xí)系統(tǒng)需要自己找出數(shù)據(jù)中的模式。監(jiān)督學(xué)習(xí)是指輸入數(shù)據(jù)已經(jīng)被標(biāo)記好了結(jié)果,機(jī)器學(xué)習(xí)系統(tǒng)可根據(jù)標(biāo)記來(lái)學(xué)習(xí)預(yù)測(cè)新實(shí)例的標(biāo)記。強(qiáng)化學(xué)習(xí)是指機(jī)器學(xué)習(xí)系統(tǒng)通過(guò)嘗試與環(huán)境交互來(lái)學(xué)習(xí)最佳行動(dòng)策略。

無(wú)監(jiān)督學(xué)習(xí)常用的算法包括:聚類、關(guān)聯(lián)分析、主題模型等。聚類是將相似的樣本分組,不相似的樣本分離。關(guān)聯(lián)分析是在數(shù)據(jù)中尋找有趣的關(guān)聯(lián)關(guān)系,例如購(gòu)物籃中的商品組合。主題模型是根據(jù)文本數(shù)據(jù)中的詞匯分布模型,生成該文本的主題。

監(jiān)督學(xué)習(xí)常用的算法包括:回歸、分類、推薦系統(tǒng)等?;貧w從已有數(shù)據(jù)中尋找函數(shù)的最佳擬合,可用于預(yù)測(cè)數(shù)值型結(jié)果。分類將樣本分到預(yù)先定義的類別,可用于預(yù)測(cè)分類型結(jié)果。推薦系統(tǒng)是指在數(shù)據(jù)集中尋找相關(guān)的數(shù)據(jù),用于向用戶推薦個(gè)性化內(nèi)容。

強(qiáng)化學(xué)習(xí)常用的算法包括:Q學(xué)習(xí)、策略梯度等。Q學(xué)習(xí)是用于動(dòng)態(tài)決策過(guò)程的一種學(xué)習(xí)算法,用于從環(huán)境和獎(jiǎng)勵(lì)反饋中學(xué)習(xí)最佳行動(dòng)策略。策略梯度是優(yōu)化策略的一種方法,可以在高維的連續(xù)動(dòng)作空間中實(shí)現(xiàn)優(yōu)化。

機(jī)器學(xué)習(xí)算法分類

除了前面提到的分類方式,機(jī)器學(xué)習(xí)算法還可以按照其學(xué)習(xí)方式、算法特點(diǎn)等方式進(jìn)行分類。

按照學(xué)習(xí)方式,機(jī)器學(xué)習(xí)算法被分為基于實(shí)例的學(xué)習(xí)、基于統(tǒng)計(jì)的學(xué)習(xí)、基于規(guī)則的學(xué)習(xí)等?;趯?shí)例的學(xué)習(xí)是指學(xué)習(xí)從給定的例子中進(jìn)行的,例如KNN算法?;诮y(tǒng)計(jì)的學(xué)習(xí)是指學(xué)習(xí)基于統(tǒng)計(jì)方法和模型,例如樸素貝葉斯算法?;谝?guī)則的學(xué)習(xí)是指從給定的一組規(guī)則集中進(jìn)行學(xué)習(xí),例如決策樹(shù)算法。

按照算法特點(diǎn),機(jī)器學(xué)習(xí)算法可以分為單一算法、集成算法等。單一算法是指使用一種算法來(lái)解決問(wèn)題,例如線性回歸算法。集成算法是指將多個(gè)算法進(jìn)行組合,形成更強(qiáng)大的算法,例如隨機(jī)森林算法。

機(jī)器學(xué)習(xí)算法模型

機(jī)器學(xué)習(xí)算法模型是指通過(guò)機(jī)器學(xué)習(xí)算法生成的可以應(yīng)用于實(shí)際問(wèn)題的模型。機(jī)器學(xué)習(xí)算法模型可以分為決策樹(shù)模型、邏輯回歸模型、神經(jīng)網(wǎng)絡(luò)模型等。

決策樹(shù)模型通過(guò)迭代地選擇最佳特征,并以分裂的方式形成一顆樹(shù),由于它輸出結(jié)果的可解釋性強(qiáng),因此在數(shù)據(jù)挖掘和分類問(wèn)題中特別流行。

邏輯回歸模型是一種借鑒了生物學(xué)上的回歸分析方法而來(lái)的機(jī)器學(xué)習(xí)模型,邏輯回歸模型在分類問(wèn)題中被廣泛應(yīng)用,例如判斷垃圾郵件。

神經(jīng)網(wǎng)絡(luò)模型是一種通過(guò)模擬人類神經(jīng)系統(tǒng),學(xué)習(xí)高度機(jī)械化和抽象的任務(wù)的模型,由于其強(qiáng)大的能力,神經(jīng)網(wǎng)絡(luò)模型在圖像識(shí)別和語(yǔ)音識(shí)別等領(lǐng)域廣泛應(yīng)用。

總結(jié)

本文概述了機(jī)器學(xué)習(xí)算法的分類和常見(jiàn)的機(jī)器學(xué)習(xí)算法模型,機(jī)器學(xué)習(xí)算法的發(fā)展越來(lái)越成熟,應(yīng)用范圍越來(lái)越廣泛,這些算法的應(yīng)用已經(jīng)滲透到我們的生活中,我們有理由相信,未來(lái)機(jī)器學(xué)習(xí)算法的發(fā)展將會(huì)在更多領(lǐng)域創(chuàng)造更加驚人的應(yīng)用價(jià)值。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    FPGA在機(jī)器學(xué)習(xí)中的具體應(yīng)用

    隨著機(jī)器學(xué)習(xí)和人工智能技術(shù)的迅猛發(fā)展,傳統(tǒng)的中央處理單元(CPU)和圖形處理單元(GPU)已經(jīng)無(wú)法滿足高效處理大規(guī)模數(shù)據(jù)和復(fù)雜模型的需求。FPGA(現(xiàn)場(chǎng)可編程門(mén)陣列)作為一種靈活且高效的硬件加速平臺(tái)
    的頭像 發(fā)表于 07-16 15:34 ?221次閱讀

    【「# ROS 2智能機(jī)器人開(kāi)發(fā)實(shí)踐」閱讀體驗(yàn)】視覺(jué)實(shí)現(xiàn)的基礎(chǔ)算法的應(yīng)用

    視覺(jué)巡線,展示了如何從數(shù)據(jù)采集、模型訓(xùn)練到機(jī)器人部署的完整流程。 值得注意的是,深度學(xué)習(xí)模型的實(shí)時(shí)性對(duì)機(jī)器人計(jì)算資源提出了較高要求,優(yōu)化
    發(fā)表于 05-03 19:41

    十大鮮為人知卻功能強(qiáng)大的機(jī)器學(xué)習(xí)模型

    本文轉(zhuǎn)自:QuantML當(dāng)我們談?wù)?b class='flag-5'>機(jī)器學(xué)習(xí)時(shí),線性回歸、決策樹(shù)和神經(jīng)網(wǎng)絡(luò)這些常見(jiàn)的算法往往占據(jù)了主導(dǎo)地位。然而,除了這些眾所周知的模型之外,還存在一些鮮為人知但功能強(qiáng)大的
    的頭像 發(fā)表于 04-02 14:10 ?514次閱讀
    十大鮮為人知卻功能強(qiáng)大的<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>模型</b>

    請(qǐng)問(wèn)STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個(gè)系列的芯片?

    STM32部署機(jī)器學(xué)習(xí)算法硬件至少要使用哪個(gè)系列的芯片?
    發(fā)表于 03-13 07:34

    機(jī)器學(xué)習(xí)模型市場(chǎng)前景如何

    當(dāng)今,隨著算法的不斷優(yōu)化、數(shù)據(jù)量的爆炸式增長(zhǎng)以及計(jì)算能力的飛速提升,機(jī)器學(xué)習(xí)模型的市場(chǎng)前景愈發(fā)廣闊。下面,AI部落小編將探討機(jī)器
    的頭像 發(fā)表于 02-13 09:39 ?359次閱讀

    華為云 Flexus X 實(shí)例部署安裝 Jupyter Notebook,學(xué)習(xí) AI,機(jī)器學(xué)習(xí)算法

    前言 由于本人最近在學(xué)習(xí)一些機(jī)器算法,AI 算法的知識(shí),需要搭建一個(gè)學(xué)習(xí)環(huán)境,所以就在最近購(gòu)買的華為云 Flexus X 實(shí)例上安裝了
    的頭像 發(fā)表于 01-02 13:43 ?533次閱讀
    華為云 Flexus X 實(shí)例部署安裝 Jupyter Notebook,<b class='flag-5'>學(xué)習(xí)</b> AI,<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹了機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語(yǔ)。在本文中,我們會(huì)介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法特征,供各位老師選擇。 01 傳統(tǒng)
    的頭像 發(fā)表于 12-30 09:16 ?1184次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    什么是機(jī)器學(xué)習(xí)?通過(guò)機(jī)器學(xué)習(xí)方法能解決哪些問(wèn)題?

    來(lái)源:Master編程樹(shù)“機(jī)器學(xué)習(xí)”最初的研究動(dòng)機(jī)是讓計(jì)算機(jī)系統(tǒng)具有人的學(xué)習(xí)能力以便實(shí)現(xiàn)人工智能。因?yàn)闆](méi)有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能的。目前被廣泛采用的
    的頭像 發(fā)表于 11-16 01:07 ?963次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過(guò)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問(wèn)題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    緊密。 NPU的起源與特點(diǎn) NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)項(xiàng)目中提出,旨在為T(mén)ensorFlow框架提供專用的硬件加速。NPU的設(shè)計(jì)目標(biāo)是提高機(jī)器學(xué)習(xí)算法的運(yùn)行效率,特別是在處理
    的頭像 發(fā)表于 11-15 09:19 ?1214次閱讀

    【每天學(xué)點(diǎn)AI】KNN算法:簡(jiǎn)單有效的機(jī)器學(xué)習(xí)分類

    過(guò)程,其實(shí)就是一個(gè)簡(jiǎn)單的分類問(wèn)題,而KNN(K-NearestNeighbors)算法正是模仿這種人類決策過(guò)程的機(jī)器學(xué)習(xí)算法。|什么是KNN
    的頭像 發(fā)表于 10-31 14:09 ?842次閱讀
    【每天學(xué)點(diǎn)AI】KNN<b class='flag-5'>算法</b>:簡(jiǎn)單有效的<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>分類</b>器

    人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)存在什么區(qū)別

    人工智能指的是在某種程度上顯示出類似人類智能的設(shè)備。AI有很多技術(shù),但其中一個(gè)很大的子集是機(jī)器學(xué)習(xí)——讓算法從數(shù)據(jù)中學(xué)習(xí)。
    發(fā)表于 10-24 17:22 ?2976次閱讀
    人工智能、<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>和深度<b class='flag-5'>學(xué)習(xí)</b>存在什么區(qū)別

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對(duì)兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度學(xué)習(xí)
    的頭像 發(fā)表于 10-23 15:25 ?2880次閱讀

    AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)的區(qū)別

    AI大模型與傳統(tǒng)機(jī)器學(xué)習(xí)在多個(gè)方面存在顯著的區(qū)別。以下是對(duì)這些區(qū)別的介紹: 一、模型規(guī)模與復(fù)雜度 AI大模型 :通常包含數(shù)十億甚至數(shù)萬(wàn)億的參
    的頭像 發(fā)表于 10-23 15:01 ?2566次閱讀

    LIBS結(jié)合機(jī)器學(xué)習(xí)算法的江西名優(yōu)春茶采收期鑒別

    以廬山云霧茶和狗牯腦茶的明前茶、雨前茶為對(duì)象,研究激光誘導(dǎo)擊穿光譜結(jié)合機(jī)器學(xué)習(xí)的茶葉鑒別方法。將茶葉茶,水?dāng)?shù)據(jù)融合可有效鑒別春茶采收期,且數(shù)據(jù)融合后表現(xiàn)出更好的穩(wěn)定性和魯棒性,LIBS結(jié)合機(jī)器
    的頭像 發(fā)表于 10-22 18:05 ?644次閱讀
    LIBS結(jié)合<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b><b class='flag-5'>算法</b>的江西名優(yōu)春茶采收期鑒別

    【「時(shí)間序列與機(jī)器學(xué)習(xí)」閱讀體驗(yàn)】+ 鳥(niǎo)瞰這本書(shū)

    清晰,從時(shí)間序列分析的基礎(chǔ)理論出發(fā),逐步深入到機(jī)器學(xué)習(xí)算法在時(shí)間序列預(yù)測(cè)中的應(yīng)用,內(nèi)容全面,循序漸進(jìn)。每一章都經(jīng)過(guò)精心設(shè)計(jì),對(duì)理論知識(shí)進(jìn)行了詳細(xì)的闡述,對(duì)實(shí)際案例進(jìn)行了生動(dòng)的展示,使讀者在理論與實(shí)踐
    發(fā)表于 08-12 11:28