一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

優(yōu)于10倍參數(shù)模型!微軟發(fā)布Orca 2 LLM

jf_WZTOguxH ? 來源:AI前線 ? 2023-12-26 14:23 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

微軟發(fā)布 Orca 2 LLM,這是 Llama 2 的一個調(diào)優(yōu)版本,性能與包含 10 倍參數(shù)的模型相當(dāng),甚至更好。Orca 2 使用了一個合成訓(xùn)練數(shù)據(jù)集和一項稱為 Prompt Erasure(提示詞擦除) 的新技術(shù)來實現(xiàn)這一性能。

Orca 2 使用了師生模式的訓(xùn)練方案,其中一個較大、較強的 LLM 作為另一個較小的 LLM(學(xué)生)的老師,老師的目標(biāo)是提升學(xué)生的性能,使其與更大模型的性能相媲美。微軟的訓(xùn)練技術(shù)教會較小的模型多種推理技巧,并教其如何為特定任務(wù)選擇最有效的技巧。

為此,老師被賦予了復(fù)雜的提示詞來觸發(fā)某種推理行為。不過,在一種被稱為 Prompt Erasure 的方案中,學(xué)生只得到任務(wù)要求和期望的響應(yīng),而不是老師的提示詞。在基準(zhǔn)測試中,一個擁有 13B 參數(shù)的 Orca 2 模型的表現(xiàn)超過了一個 13B 參數(shù)的基準(zhǔn) Llama 2 模型,提升了 47.54%。而一個擁有 7B 參數(shù)的 Orca 2 模型在推理任務(wù)方面與一個擁有 70B 參數(shù)的 Llama 2 模型相當(dāng),甚至更好。

盡管像 ChatGPT 這樣的 LLM 在給定少量提示詞的情況下通常表現(xiàn)良好,但由于其內(nèi)存和計算需求較大,托管這些模型極具有挑戰(zhàn)性。經(jīng)過調(diào)優(yōu)的較小的模型也可以表現(xiàn)良好,許多研究人員已經(jīng)在研究使用較大 LLM 生成的合成數(shù)據(jù)集對它們進(jìn)行訓(xùn)練。

InfoQ 最近報道了谷歌的 Distilling Step-by-Step 方法,該方法會讓老師 LLM 自動生成一個小型的調(diào)優(yōu)數(shù)據(jù)集,其中包含輸入和輸出標(biāo)簽,以及為何選擇輸出標(biāo)簽的“基本原理”。InfoQ 還報道了 Stability AI 的 Stable Beluga 模型,它使用微軟原始的 Orca 1 方案進(jìn)行訓(xùn)練,該方案使用了 Explanation Tuning,其中老師 LLM 被提示“生成詳細(xì)答案”。

與 Orca 1 類似,Orca 2 訓(xùn)練數(shù)據(jù)集是由老師 LLM 生成的,而老師 LLM 收到了詳細(xì)的提示詞。然而,微軟新的訓(xùn)練方法 Cautious Reasoning 將訓(xùn)練任務(wù)與提示詞相結(jié)合,引導(dǎo)老師 LLM 使用特定的問題解決策略,如“一步一步”或“解釋你的答案”。然后在學(xué)生的訓(xùn)練過程中,老師的提示詞被刪除,這促使學(xué)生學(xué)會選擇正確的策略。

為了評估這種方法,微軟將 Orca 2 模型的性能與幾個基準(zhǔn)模型進(jìn)行了比較,包括 Llama 2、ChatGPT(GPT-3.5)和 GPT-4。基準(zhǔn)任務(wù)包括推理、語言理解、文本完成和摘要。在推理基準(zhǔn)測試中,13B 參數(shù) Orca 2 模型優(yōu)于除 ChatGPT 和 GPT-4 之外的所有基準(zhǔn)。他們還發(fā)現(xiàn),給 Orca 2 一個“謹(jǐn)慎”的系統(tǒng)提示詞(“你是一個謹(jǐn)慎的助手,你會仔細(xì)遵循指示”)相比無系統(tǒng)提示會略微提升其性能。

有幾位用戶在 X 上發(fā)表了關(guān)于 Orca 2 的帖子。一位用戶指出:“你不需要用‘一步一步解釋’這樣的技巧來提示它。它自己知道?!?AI 研究員 Rudi Ranck 寫道:

許多絕妙的想法都很簡單……就像 Orca 2 中的“提示詞擦除”一樣:完整的提示詞不會呈現(xiàn)給模型,而只呈現(xiàn)任務(wù)和答案(它過濾了生成這些答案所使用的完整提示詞)。這有助于模型在更高層次上制定策略。這是一篇非常好的論文。我強烈建議通讀全文。







審核編輯:劉清

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • ChatGPT
    +關(guān)注

    關(guān)注

    29

    文章

    1590

    瀏覽量

    9126
  • LLM
    LLM
    +關(guān)注

    關(guān)注

    1

    文章

    325

    瀏覽量

    852

原文標(biāo)題:微軟發(fā)布 Orca 2 LLM,表現(xiàn)優(yōu)于 10 倍參數(shù)模型

文章出處:【微信號:AI前線,微信公眾號:AI前線】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    小白學(xué)大模型:從零實現(xiàn) LLM語言模型

    在當(dāng)今人工智能領(lǐng)域,大型語言模型LLM)的開發(fā)已經(jīng)成為一個熱門話題。這些模型通過學(xué)習(xí)大量的文本數(shù)據(jù),能夠生成自然語言文本,完成各種復(fù)雜的任務(wù),如寫作、翻譯、問答等。https
    的頭像 發(fā)表于 04-30 18:34 ?521次閱讀
    小白學(xué)大<b class='flag-5'>模型</b>:從零實現(xiàn) <b class='flag-5'>LLM</b>語言<b class='flag-5'>模型</b>

    詳解 LLM 推理模型的現(xiàn)狀

    領(lǐng)域的最新研究進(jìn)展,特別是自DeepSeekR1發(fā)布后興起的推理時間計算擴(kuò)展相關(guān)內(nèi)容。在LLM中實施和改進(jìn)推理簡單來說,基于LLM的推理模型是一種旨在通過生成中間
    的頭像 發(fā)表于 04-03 12:09 ?515次閱讀
    詳解 <b class='flag-5'>LLM</b> 推理<b class='flag-5'>模型</b>的現(xiàn)狀

    無法在OVMS上運行來自Meta的大型語言模型LLM),為什么?

    無法在 OVMS 上運行來自 Meta 的大型語言模型LLM),例如 LLaMa2。 從 OVMS GitHub* 存儲庫運行 llama_chat Python* Demo 時遇到錯誤。
    發(fā)表于 03-05 08:07

    字節(jié)跳動發(fā)布豆包大模型1.5 Pro

    3.5 Sonnet等模型。 該模型采用大規(guī)模稀疏MoE架構(gòu),使用較小的激活參數(shù)進(jìn)行預(yù)訓(xùn)練,卻能等效7激活參數(shù)的Dense
    的頭像 發(fā)表于 01-23 10:24 ?662次閱讀

    新品| LLM630 Compute Kit,AI 大語言模型推理開發(fā)平臺

    LLM630LLM推理,視覺識別,可開發(fā),靈活擴(kuò)展···LLM630ComputeKit是一款A(yù)I大語言模型推理開發(fā)平臺,專為邊緣計算和智能交互應(yīng)用而設(shè)計。該套件的主板搭載愛芯AX630CSoC
    的頭像 發(fā)表于 01-17 18:48 ?705次閱讀
    新品| <b class='flag-5'>LLM</b>630 Compute Kit,AI 大語言<b class='flag-5'>模型</b>推理開發(fā)平臺

    小白學(xué)大模型:構(gòu)建LLM的關(guān)鍵步驟

    隨著大規(guī)模語言模型LLM)在性能、成本和應(yīng)用前景上的快速發(fā)展,越來越多的團(tuán)隊開始探索如何自主訓(xùn)練LLM模型。然而,是否從零開始訓(xùn)練一個LLM
    的頭像 發(fā)表于 01-09 12:12 ?989次閱讀
    小白學(xué)大<b class='flag-5'>模型</b>:構(gòu)建<b class='flag-5'>LLM</b>的關(guān)鍵步驟

    什么是LLMLLM在自然語言處理中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,自然語言處理(NLP)領(lǐng)域迎來了革命性的進(jìn)步。其中,大型語言模型LLM)的出現(xiàn),標(biāo)志著我們對語言理解能力的一次飛躍。LLM通過深度學(xué)習(xí)和海量數(shù)據(jù)訓(xùn)練,使得機(jī)器能夠以前
    的頭像 發(fā)表于 11-19 15:32 ?3671次閱讀

    車載大模型分析揭示:存儲帶寬對性能影響遠(yuǎn)超算力

    車載大模型的定義尚無,傳統(tǒng)大模型LLM參數(shù)一般在70億至2000億之間,而早期的CNN模型參數(shù)
    的頭像 發(fā)表于 11-09 10:36 ?1424次閱讀
    車載大<b class='flag-5'>模型</b>分析揭示:存儲帶寬對性能影響遠(yuǎn)超算力

    LLM技術(shù)的未來趨勢分析

    。 技術(shù)進(jìn)步 1. 模型規(guī)模的增長 隨著計算能力的提升和數(shù)據(jù)集的擴(kuò)大,LLM的規(guī)模也在不斷增長。更大的模型能夠捕捉更復(fù)雜的語言模式,提高任務(wù)的性能。例如,GPT-3模型擁有1750億個
    的頭像 發(fā)表于 11-08 09:35 ?1149次閱讀

    如何訓(xùn)練自己的LLM模型

    訓(xùn)練自己的大型語言模型LLM)是一個復(fù)雜且資源密集的過程,涉及到大量的數(shù)據(jù)、計算資源和專業(yè)知識。以下是訓(xùn)練LLM模型的一般步驟,以及一些關(guān)鍵考慮因素: 定義目標(biāo)和需求 : 確定你的
    的頭像 發(fā)表于 11-08 09:30 ?1533次閱讀

    LLM和傳統(tǒng)機(jī)器學(xué)習(xí)的區(qū)別

    在人工智能領(lǐng)域,LLM(Large Language Models,大型語言模型)和傳統(tǒng)機(jī)器學(xué)習(xí)是兩種不同的技術(shù)路徑,它們在處理數(shù)據(jù)、模型結(jié)構(gòu)、應(yīng)用場景等方面有著顯著的差異。 1. 模型
    的頭像 發(fā)表于 11-08 09:25 ?1912次閱讀

    新品|LLM Module,離線大語言模型模塊

    LLM,全稱大語言模型(LargeLanguageModel)。是一種基于深度學(xué)習(xí)的人工智能模型。它通過大量文本數(shù)據(jù)進(jìn)行訓(xùn)練,從而能夠進(jìn)行對話、回答問題、撰寫文本等其他任務(wù)
    的頭像 發(fā)表于 11-02 08:08 ?1059次閱讀
    新品|<b class='flag-5'>LLM</b> Module,離線大語言<b class='flag-5'>模型</b>模塊

    理解LLM中的模型量化

    在本文中,我們將探討一種廣泛采用的技術(shù),用于減小大型語言模型LLM)的大小和計算需求,以便將這些模型部署到邊緣設(shè)備上。這項技術(shù)稱為模型量化。它使得人工智能
    的頭像 發(fā)表于 10-25 11:26 ?710次閱讀
    理解<b class='flag-5'>LLM</b>中的<b class='flag-5'>模型</b>量化

    請問InDTU IHDMP協(xié)議使用的CRC校驗使用的什么參數(shù)模型

    InDTU IHDMP協(xié)議使用的CRC校驗使用的什么參數(shù)模型?
    發(fā)表于 07-25 06:39

    LLM模型推理加速的關(guān)鍵技術(shù)

    LLM(大型語言模型)大模型推理加速是當(dāng)前人工智能領(lǐng)域的一個研究熱點,旨在提高模型在處理復(fù)雜任務(wù)時的效率和響應(yīng)速度。以下是對LLM
    的頭像 發(fā)表于 07-24 11:38 ?1832次閱讀