一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀(guān)看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

IBM:我們用硅光芯片挑戰(zhàn)摩爾定律

454398 ? 來(lái)源:互聯(lián)網(wǎng) ? 作者:秩名 ? 2012-12-10 23:20 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

IBM擁有先進(jìn)的硅光技術(shù),并使用該技術(shù)制造微芯片,內(nèi)置發(fā)送和接收數(shù)據(jù)光鏈路的組件。在研究人員建立了光學(xué)數(shù)據(jù)鏈路芯片之前, IBM一直著力于改造使用金屬導(dǎo)線(xiàn)進(jìn)行數(shù)據(jù)交換的90納米的傳統(tǒng)數(shù)據(jù)芯片。然而新硅光學(xué)技術(shù),使用了光鏈路提供了潛在的更高的傳輸速度和更長(zhǎng)的傳輸距離。

該硅光學(xué)芯片包括多個(gè)光學(xué)元件,如光分多路復(fù)用器,讓芯片通過(guò)使用一個(gè)光的不同平率就可以完成信號(hào)的發(fā)送和接,但如果在同一時(shí)間時(shí)間發(fā)送不同波長(zhǎng)的光,則可以讓更多的數(shù)據(jù)被發(fā)送及接收。

IBM的硅光芯片每秒可處理的數(shù)據(jù)量為25千兆比特,IBM的研究人員依然在研究,并通過(guò)技術(shù)的改進(jìn),通過(guò)建立多種溝通渠道并行工作,希望這一數(shù)據(jù)能繼續(xù)得到提高。提高計(jì)算機(jī)的計(jì)算性能的同時(shí),IBM表示這也是對(duì)摩爾定律的挑戰(zhàn)。

IBM預(yù)計(jì)該技術(shù)有利于大型系統(tǒng)如超級(jí)計(jì)算機(jī),多臺(tái)服務(wù)器連接在一起,或數(shù)據(jù)通路內(nèi)服務(wù)器的“背板”。高端服務(wù)器技術(shù)滲透到消費(fèi)類(lèi)產(chǎn)品領(lǐng)域,雖然這看起來(lái)有些不太現(xiàn)實(shí)。

之前IBM采用的是90nm工藝,而英特爾用在““Ivy Bridge”最新的技術(shù)是22nm。但是,這次IBM已經(jīng)將硅光子內(nèi)置到尺寸小于100nm的芯片中。

IBM的這個(gè)方法還可以有效地利用電能,對(duì)于未來(lái)大型計(jì)算機(jī)的使用功耗也是設(shè)計(jì)人員需要考慮的重要因素之一。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀(guān)點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • IBM
    IBM
    +關(guān)注

    關(guān)注

    3

    文章

    1823

    瀏覽量

    75821
  • 貴廣芯片
    +關(guān)注

    關(guān)注

    0

    文章

    1

    瀏覽量

    5247
  • 摩爾定律吧
    +關(guān)注

    關(guān)注

    0

    文章

    1

    瀏覽量

    5191
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    晶心科技:摩爾定律放緩,RISC-V在高性能計(jì)算的重要性突顯

    運(yùn)算還是快速高頻處理計(jì)算數(shù)據(jù),或是超級(jí)電腦,只要設(shè)計(jì)或計(jì)算系統(tǒng)符合三項(xiàng)之一即可稱(chēng)之為HPC。 摩爾定律走過(guò)數(shù)十年,從1970年代開(kāi)始,世界領(lǐng)導(dǎo)廠(chǎng)商建立晶圓廠(chǎng)、提供制程工藝,在28nm之前取得非常大的成功。然而28nm之后摩爾定律在接近物理極限之前遇到大量的困
    的頭像 發(fā)表于 07-18 11:13 ?858次閱讀

    跨越摩爾定律,新思科技掩膜方案憑何改寫(xiě)3nm以下芯片游戲規(guī)則

    。 然而,隨著摩爾定律逼近物理極限,傳統(tǒng)掩模設(shè)計(jì)方法面臨巨大挑戰(zhàn),以2nm制程為例,掩膜版上的每個(gè)圖形特征尺寸僅為頭發(fā)絲直徑的五萬(wàn)分之一,任何微小誤差都可能導(dǎo)致芯片失效。對(duì)此,新思科技(Synopsys)推出制造解決方案,尤其是
    的頭像 發(fā)表于 05-16 09:36 ?4705次閱讀
    跨越<b class='flag-5'>摩爾定律</b>,新思科技掩膜方案憑何改寫(xiě)3nm以下<b class='flag-5'>芯片</b>游戲規(guī)則

    電力電子中的“摩爾定律”(1)

    本文是第二屆電力電子科普征文大賽的獲獎(jiǎng)作品,來(lái)自上海科技大學(xué)劉賾源的投稿。著名的摩爾定律中指出,集成電路每過(guò)一定時(shí)間就會(huì)性能翻倍,成本減半。那么電力電子當(dāng)中是否也存在著摩爾定律呢?1965年,英特爾
    的頭像 發(fā)表于 05-10 08:32 ?254次閱讀
    電力電子中的“<b class='flag-5'>摩爾定律</b>”(1)

    玻璃基板在芯片封裝中的應(yīng)用

    上升,摩爾定律的延續(xù)面臨巨大挑戰(zhàn)。例如,從22納米工藝制程開(kāi)始,每一代技術(shù)的設(shè)計(jì)成本增加均超過(guò)50%,3納米工藝的總設(shè)計(jì)成本更是高達(dá)15億美元。此外,晶體管成本縮放規(guī)律在28納米制程后已經(jīng)停滯。
    的頭像 發(fā)表于 04-23 11:53 ?852次閱讀
    玻璃基板在<b class='flag-5'>芯片</b>封裝中的應(yīng)用

    瑞沃微先進(jìn)封裝:突破摩爾定律枷鎖,助力半導(dǎo)體新飛躍

    在半導(dǎo)體行業(yè)的發(fā)展歷程中,技術(shù)創(chuàng)新始終是推動(dòng)行業(yè)前進(jìn)的核心動(dòng)力。深圳瑞沃微半導(dǎo)體憑借其先進(jìn)封裝技術(shù),強(qiáng)大的實(shí)力和創(chuàng)新理念,立志將半導(dǎo)體行業(yè)邁向新的高度。 回溯半導(dǎo)體行業(yè)的發(fā)展軌跡,摩爾定律無(wú)疑是一個(gè)重要的里程碑
    的頭像 發(fā)表于 03-17 11:33 ?432次閱讀
    瑞沃微先進(jìn)封裝:突破<b class='flag-5'>摩爾定律</b>枷鎖,助力半導(dǎo)體新飛躍

    納米壓印技術(shù):開(kāi)創(chuàng)下一代光刻的新篇章

    的潛力與趨勢(shì)。? 概述 在芯片制造領(lǐng)域,投影光刻技術(shù)能夠制造高精度的納米尺度圖形,然而,隨著芯片內(nèi)特征尺寸持續(xù)縮小,的衍射這一客觀(guān)規(guī)律無(wú)法避免,對(duì)紫外光刻技術(shù)產(chǎn)生了顯著影響,摩爾定律
    的頭像 發(fā)表于 02-13 10:03 ?2022次閱讀
    納米壓印技術(shù):開(kāi)創(chuàng)下一代光刻的新篇章

    混合鍵合中的銅連接:或成摩爾定律救星

    混合鍵合3D芯片技術(shù)將拯救摩爾定律。 為了繼續(xù)縮小電路尺寸,芯片制造商正在爭(zhēng)奪每一納米的空間。但在未來(lái)5年里,一項(xiàng)涉及幾百乃至幾千納米的更大尺度的技術(shù)可能同樣重要。 這項(xiàng)技術(shù)被稱(chēng)為“混合鍵合”,可以
    的頭像 發(fā)表于 02-09 09:21 ?629次閱讀
    混合鍵合中的銅連接:或成<b class='flag-5'>摩爾定律</b>救星

    石墨烯互連技術(shù):延續(xù)摩爾定律的新希望

    半導(dǎo)體行業(yè)長(zhǎng)期秉持的摩爾定律(該定律規(guī)定芯片上的晶體管密度大約每?jī)赡陸?yīng)翻一番)越來(lái)越難以維持。縮小晶體管及其間互連的能力正遭遇一些基本的物理限制。特別是,當(dāng)銅互連按比例縮小時(shí),其電阻率急劇上升,這會(huì)
    的頭像 發(fā)表于 01-09 11:34 ?575次閱讀

    摩爾定律是什么 影響了我們哪些方面

    摩爾定律是由英特爾公司創(chuàng)始人戈登·摩爾提出的,它揭示了集成電路上可容納的晶體管數(shù)量大約每18-24個(gè)月增加一倍的趨勢(shì)。該定律不僅推動(dòng)了計(jì)算機(jī)硬件的快速發(fā)展,也對(duì)多個(gè)領(lǐng)域產(chǎn)生了深遠(yuǎn)影響。
    的頭像 發(fā)表于 01-07 18:31 ?1385次閱讀

    Cadence如何應(yīng)對(duì)AI芯片設(shè)計(jì)挑戰(zhàn)

    生成式 AI 引領(lǐng)智能革命成為產(chǎn)業(yè)升級(jí)的核心動(dòng)力并點(diǎn)燃了“百模大戰(zhàn)”。多樣化的大模型應(yīng)用激增對(duì)高性能AI 芯片的需求,促使行業(yè)在摩爾定律放緩的背景下,加速推進(jìn) 2.5D、3D 及 3.5D 異構(gòu)集成技術(shù)。與此同時(shí),AI 的驅(qū)動(dòng)作用正在助力 EDA 和半導(dǎo)體產(chǎn)業(yè)實(shí)現(xiàn)顛覆性的
    的頭像 發(fā)表于 12-14 15:27 ?1323次閱讀

    摩爾定律時(shí)代,提升集成芯片系統(tǒng)化能力的有效途徑有哪些?

    電子發(fā)燒友網(wǎng)報(bào)道(文/吳子鵬)當(dāng)前,終端市場(chǎng)需求呈現(xiàn)多元化、智能化的發(fā)展趨勢(shì),芯片制造則已經(jīng)進(jìn)入后摩爾定律時(shí)代,這就導(dǎo)致先進(jìn)的工藝制程雖仍然是芯片性能提升的重要手段,但效果已經(jīng)不如從前,先進(jìn)封裝
    的頭像 發(fā)表于 12-03 00:13 ?3154次閱讀

    玻璃通孔(TGV)工藝技術(shù)的應(yīng)用

    人工智能對(duì)高性能、可持續(xù)計(jì)算和網(wǎng)絡(luò)硅片的需求無(wú)疑增加了研發(fā)投入,加快了半導(dǎo)體技術(shù)的創(chuàng)新步伐。隨著摩爾定律芯片層面的放緩,人們希望在?ASIC 封裝內(nèi)封裝盡可能多的芯片,并在封裝層面獲得摩爾定
    的頭像 發(fā)表于 11-24 13:03 ?2074次閱讀
    玻璃通孔(TGV)工藝技術(shù)的應(yīng)用

    CMOS 2.0:摩爾定律的新篇章

    這一部分不會(huì)改變,但處理器和其他復(fù)雜CMOS芯片的制造方式將會(huì)發(fā)生變化。 CMOS技術(shù),作為微處理器制造的核心技術(shù),自20世紀(jì)60年代以來(lái)一直在推動(dòng)著電子產(chǎn)業(yè)的發(fā)展。然而,隨著技術(shù)的不斷進(jìn)步,CMOS的縮小化策略開(kāi)始面臨挑戰(zhàn)。傳統(tǒng)的通過(guò)縮小晶體管和互
    的頭像 發(fā)表于 11-18 09:16 ?572次閱讀

    高算力AI芯片主張“超越摩爾”,Chiplet與先進(jìn)封裝技術(shù)迎百家爭(zhēng)鳴時(shí)代

    越來(lái)越差。在這種情況下,超越摩爾逐漸成為打造高算力芯片的主流技術(shù)。 ? 超越摩爾是后摩爾定律時(shí)代三大技術(shù)路線(xiàn)之一,強(qiáng)調(diào)利用層堆疊和高速接口技術(shù)將處理、模擬/射頻、光電、能源、傳感等功能
    的頭像 發(fā)表于 09-04 01:16 ?4205次閱讀
    高算力AI<b class='flag-5'>芯片</b>主張“超越<b class='flag-5'>摩爾</b>”,Chiplet與先進(jìn)封裝技術(shù)迎百家爭(zhēng)鳴時(shí)代