一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

如何用卷積神經(jīng)網(wǎng)絡處理語義圖像分割

電子設計 ? 作者:電子設計 ? 2018-10-15 09:51 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

圖像分割是根據(jù)圖像內(nèi)容對指定區(qū)域進行標記的計算機視覺任務,簡言之就是“這張圖片里有什么,其在圖片中的位置是什么?”本文聚焦于語義分割任務,即在分割圖中將同一類別的不同實例視為同一對象。

更具體地講,語義圖像分割的目標在于標記圖片中每一個像素,并將每一個像素與其表示的類別對應起來。因為會預測圖像中的每一個像素,所以一般將這樣的任務稱為密集預測。

語義分割的例子,目標是預測圖像中每一個像素的類別標簽

當我們有越來越多要用機器執(zhí)行的任務時,為這些機器配備必需的感知器是很重要的。

自動駕駛中實時語義分割道路場景

還有一點要注意的是我們不會分割同一類別的實例,只需要關注每一個像素的類別。換句話講,如果在輸入圖像中有兩個目標屬于同一類,分割映射不會將其分為單獨的兩個目標。

相對地,實例分割模型是另一種不同的模型,該模型可以區(qū)分同一類的不同目標。

任務表征

簡單地說,我們的目標是要用 RGB 圖(高 x 寬 x3)或灰度圖(高 x 寬 x1)為輸入,并輸出一個分割圖,在分割圖中每個像素都包括一個用整數(shù)表示的類別標簽(高 x 寬 x1)。

注意:為了視覺上的理解簡單起見,我標記的是分辨率比較低的預測圖。事實上,分割標簽的分辨率是和原始輸入圖的分辨率相對應的。

與我們處理標準分類值的方法相似,我們通過獨熱編碼類別標簽的方法創(chuàng)建目標——本質(zhì)上講是要為每一個可能的類創(chuàng)建一個輸出通道。

然后我們可以利用每一個像素位深向量的 argmax 函數(shù)將預測值分解為分割映射(如上圖所示)。

也可以通過將目標重疊在輸入圖像上來對目標進行觀察。

建立網(wǎng)絡架構

針對這項任務簡單地構建神經(jīng)網(wǎng)絡架構的方法是簡單地堆疊大量卷積層(用 same 填充保留維度)后輸出最終的分割映射。通過特征圖的接連轉換,直接從輸入圖像學到了相對應的分割映射;然而,在整個網(wǎng)絡中要保留完整分辨率的計算成本是很高的。

回顧深度卷積網(wǎng)絡,前期的卷積層更傾向于學習低級概念,而后期的卷積層則會產(chǎn)生更高級(且專一)的特征圖。為了保持表達性,一般而言,當我們到達更深層的網(wǎng)絡時,需要增加特征圖(通道)的數(shù)量。

對圖像分類任務而言,這不一定會造成什么問題,因為對這個任務而言,我們只需要關注圖像里面有什么(而不是目標類別對象的位置)。因此,我們可以通過池化或逐步卷積(即壓縮空間分辨率)定期對特征圖進行下采樣以緩和計算壓力。

常用的圖像分割模型的方法遵循編碼器/解碼器結構,在這個結構中,我們對輸入的空間分辨率下采樣,產(chǎn)生分辨率更低的特征圖,通過學習這些特征圖可以更高效地分辨類別,還可以將這些特征表征上采樣至完整分辨率的分割圖。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    卷積神經(jīng)網(wǎng)絡一維卷積處理過程

    。本文就以一維卷積神經(jīng)網(wǎng)絡為例談談怎么來進一步優(yōu)化卷積神經(jīng)網(wǎng)絡使用的memory。文章(卷積神經(jīng)網(wǎng)絡
    發(fā)表于 12-23 06:16

    卷積神經(jīng)網(wǎng)絡模型發(fā)展及應用

    神經(jīng)網(wǎng)絡已經(jīng)廣泛應用于圖像分類、目標檢測、語義分割以及自然語言處理等領域。首先分析了典型卷積
    發(fā)表于 08-02 10:39

    卷積神經(jīng)網(wǎng)絡為什么適合圖像處理?

    卷積神經(jīng)網(wǎng)絡為什么適合圖像處理
    發(fā)表于 09-08 10:23

    聚焦語義分割任務,如何用卷積神經(jīng)網(wǎng)絡處理語義圖像分割

    同一對象。作者將沿著該領域的研究脈絡,說明如何用卷積神經(jīng)網(wǎng)絡處理語義圖像
    發(fā)表于 09-17 15:21 ?678次閱讀

    分析總結基于深度神經(jīng)網(wǎng)絡圖像語義分割方法

    隨著深度學習技術的快速發(fā)展及其在語義分割領域的廣泛應用,語義分割效果得到顯著提升。對基于深度神經(jīng)網(wǎng)絡
    發(fā)表于 03-19 14:14 ?21次下載
    分析總結基于深度<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的<b class='flag-5'>圖像</b><b class='flag-5'>語義</b><b class='flag-5'>分割</b>方法

    基于深度神經(jīng)網(wǎng)絡圖像語義分割方法

    對應用于圖像語義分割的幾種深度神經(jīng)網(wǎng)絡模型進行簡單介紹,接著詳細闡述了現(xiàn)有主流的基于深度神經(jīng)網(wǎng)絡圖像
    發(fā)表于 04-02 13:59 ?11次下載
    基于深度<b class='flag-5'>神經(jīng)網(wǎng)絡</b>的<b class='flag-5'>圖像</b><b class='flag-5'>語義</b><b class='flag-5'>分割</b>方法

    卷積神經(jīng)網(wǎng)絡的應用 卷積神經(jīng)網(wǎng)絡通常用來處理什么

    神經(jīng)網(wǎng)絡,卷積神經(jīng)網(wǎng)絡廣泛用于圖像識別、自然語言處理、視頻處理等方面。本文將對
    的頭像 發(fā)表于 08-21 16:41 ?5623次閱讀

    卷積神經(jīng)網(wǎng)絡概述 卷積神經(jīng)網(wǎng)絡的特點 cnn卷積神經(jīng)網(wǎng)絡的優(yōu)點

    卷積神經(jīng)網(wǎng)絡概述 卷積神經(jīng)網(wǎng)絡的特點 cnn卷積神經(jīng)網(wǎng)絡的優(yōu)點?
    的頭像 發(fā)表于 08-21 16:41 ?3794次閱讀

    卷積神經(jīng)網(wǎng)絡如何識別圖像

    卷積神經(jīng)網(wǎng)絡如何識別圖像? 卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network, CNN)由于其出色的
    的頭像 發(fā)表于 08-21 16:49 ?2356次閱讀

    卷積神經(jīng)網(wǎng)絡的基本原理 卷積神經(jīng)網(wǎng)絡發(fā)展 卷積神經(jīng)網(wǎng)絡三大特點

    中最重要的神經(jīng)網(wǎng)絡之一。它是一種由多個卷積層和池化層(也可稱為下采樣層)組成的神經(jīng)網(wǎng)絡。CNN 的基本思想是以圖像為輸入,通過網(wǎng)絡
    的頭像 發(fā)表于 08-21 16:49 ?3133次閱讀

    卷積神經(jīng)網(wǎng)絡的介紹 什么是卷積神經(jīng)網(wǎng)絡算法

    的深度學習算法。CNN模型最早被提出是為了處理圖像,其模型結構中包含卷積層、池化層和全連接層等關鍵技術,經(jīng)過多個卷積層和池化層的處理,CNN
    的頭像 發(fā)表于 08-21 16:49 ?2343次閱讀

    卷積神經(jīng)網(wǎng)絡的基本結構及其功能

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹
    的頭像 發(fā)表于 07-02 14:45 ?3615次閱讀

    卷積神經(jīng)網(wǎng)絡的原理與實現(xiàn)

    1.卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。
    的頭像 發(fā)表于 07-02 16:47 ?1282次閱讀

    cnn卷積神經(jīng)網(wǎng)絡分類有哪些

    卷積神經(jīng)網(wǎng)絡(CNN)是一種深度學習模型,廣泛應用于圖像分類、目標檢測、語義分割等領域。本文將詳細介紹CNN在分類任務中的應用,包括基本結構
    的頭像 發(fā)表于 07-03 09:28 ?1470次閱讀

    卷積神經(jīng)網(wǎng)絡分類方法有哪些

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,CNN)是一種深度學習模型,廣泛應用于圖像分類、目標檢測、語義分割
    的頭像 發(fā)表于 07-03 09:40 ?1043次閱讀