一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>模擬技術(shù)>SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動作-前言

SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動作-前言

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

評論

查看更多

相關(guān)推薦

如何復(fù)制下一代柵極驅(qū)動光電耦合器的改進,以驅(qū)動和保護SiC MOSFET

為了匹配CREE SiC MOSFET的低開關(guān)損耗,柵極驅(qū)動器必須能夠以快速壓擺率提供高輸出電流和電壓,以克服SiC MOSFET柵極電容。
2021-05-24 06:17:002391

SiC MOSFET學習筆記:各家SiC廠商的MOSFET結(jié)構(gòu)

當前量產(chǎn)主流SiC MOSFET芯片元胞結(jié)構(gòu)有兩大類,是按照柵極溝道的形狀來區(qū)分的,平面型和溝槽型。
2023-06-07 10:32:074310

SiC MOSFET柵極驅(qū)動電路的優(yōu)化方案

在高壓開關(guān)電源應(yīng)用中,相較傳統(tǒng)的硅MOSFET和IGBT,碳化硅(以下簡稱“SiC”)MOSFET有明顯的優(yōu)勢。使用硅MOSFET可以實現(xiàn)高頻(數(shù)百千赫茲)開關(guān),但它們不能用于非常高的電壓(>
2023-08-03 11:09:57740

MOSFET工作原理

防止兩個MOSFET管直通,通常串接一個0.5~1Ω小電阻用于限流,該電路適用于不要求隔離的功率開關(guān)設(shè)備。這兩種電路特點是結(jié)構(gòu)簡單?! 」β?b class="flag-6" style="color: red">MOSFET 屬于電壓型控制器件,只要柵極之間施加
2019-06-14 00:37:57

MOSFET的具體概念以及注意事項-Agitekservice

是相互絕緣的,所以稱它為絕緣柵型場效應(yīng)管。圖2—54(a)的L為溝道長度,W為溝道寬度。圖2—54所示的MOSFET,當柵極G和S之間不加任何電壓,即UGS=0時,由于漏兩個N+型區(qū)之間隔有
2018-08-07 14:16:14

MOSFET的重要特性–柵極閾值電壓

MOSFET的VGS(th):柵極閾值電壓MOSFET的VGS(th):柵極閾值電壓是為使MOSFET導通,柵極必需的電壓。也就是說,VGS如果是閾值以上的電壓,則MOSFET導通??赡苡?/div>
2019-05-02 09:41:04

SIC MOSFET

有使用過SIC MOSFET 的大佬嗎 想請教一下驅(qū)動電路是如何搭建的。
2021-04-02 15:43:15

SiC-MOSFET與Si-MOSFET的區(qū)別

電阻低,通道電阻高,因此具有驅(qū)動電壓柵極電壓Vgs越高導通電阻越低的特性。下圖表示SiC-MOSFET的導通電阻與Vgs的關(guān)系。導通電阻從Vgs為20V左右開始變化(下降)逐漸減少,接近
2018-11-30 11:34:24

SiC-MOSFET體二管特性

Si-MOSFET大得多。而在給柵極-施加18V電壓、SiC-MOSFET導通的條件下,電阻更小的通道部分(而非體二管部分)流過的電流占支配低位。為方便從結(jié)構(gòu)角度理解各種狀態(tài),下面還給出了MOSFET的截面圖
2018-11-27 16:40:24

SiC-MOSFET功率晶體管的結(jié)構(gòu)與特征比較

”)應(yīng)用越來越廣泛。關(guān)于SiC-MOSFET,這里給出了DMOS結(jié)構(gòu),不過目前ROHM已經(jīng)開始量產(chǎn)特性更優(yōu)異的溝槽結(jié)構(gòu)SiC-MOSFET。具體情況計劃后續(xù)進行介紹。在特征方面,Si-DMOS存在
2018-11-30 11:35:30

SiC-MOSFET器件結(jié)構(gòu)和特征

  1. 器件結(jié)構(gòu)和特征  Si材料中越是高耐壓器件,單位面積的導通電阻也越大(以耐壓值的約2~2.5次方的比例增加),因此600V以上的電壓主要采用IGBT(絕緣柵極型晶體管)?! GBT
2023-02-07 16:40:49

SiC-MOSFET有什么優(yōu)點

1. 器件結(jié)構(gòu)和特征Si材料中越是高耐壓器件,單位面積的導通電阻也越大(以耐壓值的約2~2.5次方的比例增加),因此600V以上的電壓主要采用IGBT(絕緣柵極型晶體管)。IGBT通過
2019-04-09 04:58:00

SiC-MOSFET的可靠性

確認現(xiàn)在的產(chǎn)品情況,請點擊這里聯(lián)系我們。ROHM SiC-MOSFET的可靠性柵極氧化膜ROHM針對SiC上形成的柵極氧化膜,通過工藝開發(fā)和元器件結(jié)構(gòu)優(yōu)化,實現(xiàn)了與Si-MOSFET同等的可靠性
2018-11-30 11:30:41

SiC-MOSFET的應(yīng)用實例

作的。全逆變器部分使用了3種晶體管(Si IGBT、第二代SiC-MOSFET、上一章介紹的第三代溝槽結(jié)構(gòu)SiC-MOSFET),組成相同尺寸的移相DCDC轉(zhuǎn)換器,就是用來比較各產(chǎn)品效率的演示機
2018-11-27 16:38:39

SiC MOSFET SCT3030KL解決方案

專門的溝槽柵極結(jié)構(gòu)(即柵極是在芯片表面構(gòu)建的一個凹槽的側(cè)壁上成形的),與平面SiC MOSFET產(chǎn)品相比,輸入電容減小了35%,導通電阻減小了50%,性能更優(yōu)異。圖4 SCT3030KL的內(nèi)部電路
2019-07-09 04:20:19

SiC MOSFET的器件演變與技術(shù)優(yōu)勢

(MPS)結(jié)構(gòu),該結(jié)構(gòu)保持最佳場分布,但通過結(jié)合真正的少數(shù)載流子注入也可以增強浪涌能力。如今,SiC管非??煽?,它們已經(jīng)證明了比硅功率二管更有利的FIT率?! ?b class="flag-6" style="color: red">MOSFET替代品  2008年推出
2023-02-27 13:48:12

SiC MOSFET:經(jīng)濟高效且可靠的高功率解決方案

柵極電壓,在20V柵極電壓下從幾乎300A降低到12V柵極電壓時的130A左右。即使碳化硅MOSFET的短路耐受時間短于IGTB的短路耐受時間,也可以通過集成在柵極驅(qū)動器IC的去飽和功能來保護SiC
2019-07-30 15:15:17

SiC SBD的器件結(jié)構(gòu)和特征

的快速充電器等的功率因數(shù)校正電路(PFC電路)和整流電路。2. SiC-SBD的正向特性SiC-SBD的開啟電壓與Si-FRD相同,小于1V。開啟電壓由肖特基勢壘的勢壘高度決定,通常如果將勢壘高度
2019-03-14 06:20:14

SiC功率器件SiC-MOSFET的特點

1. 器件結(jié)構(gòu)和特征Si材料中越是高耐壓器件,單位面積的導通電阻也越大(以耐壓值的約2~2.5次方的比例增加),因此600V以上的電壓主要采用IGBT(絕緣柵極型晶體管)。IGBT通過
2019-05-07 06:21:55

SiC功率模塊的柵極驅(qū)動其1

SiC-MOSFET的構(gòu)成SiC-MOSFET切換(開關(guān))時高邊SiC-MOSFET柵極電壓產(chǎn)生振鈴,低邊SiC-MOSFET柵極電壓升高,SiC-MOSFET動作的現(xiàn)象。通過下面的波形圖可以很容易了解這是
2018-11-30 11:31:17

SiC碳化硅MOS驅(qū)動的PCB布局方法解析

-電壓振鈴。將柵極驅(qū)動放置在緊鄰 SiC MOSFET 的位置,以最小的走線長度將柵極回路電感降至最低。此外,這種做法還有助于使各并聯(lián) MOSFET 設(shè)計之間的共電感保持恒定。以最小走線長
2022-03-24 18:03:24

Sic MOSFET SCT30N120 、SCT50N120 功率管

Sic MOSFET 主要優(yōu)勢.更小的尺寸及更輕的系統(tǒng).降低無器件的尺寸/成本.更高的系統(tǒng)效率.降低的制冷需求和散熱器尺寸Sic MOSFET ,高壓開關(guān)的突破.SCT30N120
2017-07-27 17:50:07

柵極加一個電阻的作用是什么

柵極之間加一個電阻,這個電阻起到什么作用?一是為場效應(yīng)管提供偏置電壓;二是起到瀉放電阻的作用:保護柵極G-S;
2019-05-23 07:29:18

柵極驅(qū)動器是什么

IGBT/功率MOSFET是一種電壓控制型器件,可用作電源電路、電機驅(qū)動器和其它系統(tǒng)的開關(guān)元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是和漏,而對于IGBT,它們被稱為集電極
2021-01-27 07:59:24

柵極驅(qū)動器是什么,為何需要柵極驅(qū)動器?

摘要IGBT/功率MOSFET是一種電壓控制型器件,可用作電源電路、電機驅(qū)動器和其它系統(tǒng)的開關(guān)元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是和漏,而對于IGBT,它們被稱為
2021-07-09 07:00:00

拓撲結(jié)構(gòu)功率MOSFET驅(qū)動電路設(shè)計

結(jié)構(gòu)  引言   功率MOSFET以其開關(guān)速度快、驅(qū)動功率小和功耗低等優(yōu)點在中小容量的變流器得到了廣泛的應(yīng)用。當采用功率MOSFET拓撲結(jié)構(gòu)時,同一臂上的兩個功率器件在轉(zhuǎn)換過程柵極驅(qū)動信號
2018-08-27 16:00:08

GaN和SiC區(qū)別

開來,并應(yīng)用于電纜以將電線與電纜所穿過的環(huán)境隔離開來。 SiC MOSFET可作為1200V,20A器件提供,在+ 15V柵極-電壓下具有100mΩ。此外,固有的導通電阻降低也使SiC MOSFET
2022-08-12 09:42:07

MOS管的開關(guān)電路柵極電阻和柵電阻是怎么計算的?

MOS管的開關(guān)電路柵極電阻R5和柵電阻R6是怎么計算的?在這個電路中有什么用。已知道VDD=3.7V,在可變電阻狀態(tài),作為開關(guān)電路是怎么計算R5和R6?
2021-04-19 00:07:09

N溝道和P溝道MOSFET的區(qū)別是什么

的生產(chǎn)成本也更低,因此價格更低,性能高于 p 溝道 MOSFET。在P溝道MOSFET,連接到正電壓,當柵極上的電壓低于某個閾值(Vgs 0)時,F(xiàn)ET導通。這意味著,如果您想使用 P 溝道
2023-02-02 16:26:45

Si-MOSFET與IGBT的區(qū)別

時的波形可以看到,SiC-MOSFET原理上不流過尾電流,因此相應(yīng)的開關(guān)損耗非常小。在本例SiC-MOSFET+SBD(肖特基勢壘二管)的組合與IGBT+FRD(快速恢復(fù)二管)的關(guān)斷損耗Eoff相比
2018-12-03 14:29:26

【羅姆SiC-MOSFET 試用體驗連載】SiC開發(fā)板主要電路分析以及SiC Mosfet開關(guān)速率測試

,以及電壓進行采集,由于使用的非隔離示波器,就在單管上進行了對兩個波形進行了記錄:綠色:柵極電壓;黃色:電壓;由于Mosfet使用的SiC材料,通過分析以上兩者電壓的導通時間可以判斷出
2020-06-07 15:46:23

【羅姆SiC-MOSFET 試用體驗連載】羅姆第三代溝槽柵型SiC-MOSFET(之一)

導電溝道越大,則導通電阻越??;但是柵極驅(qū)動電壓太大的話,很容易將柵極和漏之間絕緣層擊穿,造成Mosfet管的永久失效;3.為了增加開關(guān)管的速度,減少開關(guān)管的關(guān)斷時間是有必要的;且為了提高Mosfet
2020-07-16 14:55:31

一種智能二管全整流器設(shè)計

整流器配置的四個二管是對AC電壓進行整流的最簡單、也是最常規(guī)的方法。在一個整流器運行一個二管可以為全整流器和汽車用交流發(fā)電機提供一個簡單、劃算且零靜態(tài)電流的解決方案。不過,雖然二管通常
2018-09-03 15:32:01

SiC mosfet選擇柵極驅(qū)動IC時的關(guān)鍵參數(shù)

和更快的切換速度與傳統(tǒng)的硅mosfet和絕緣柵雙極晶體管(igbt)相比,SiC mosfet柵極驅(qū)動在設(shè)計過程必須仔細考慮需求。本應(yīng)用程序說明涵蓋為SiC mosfet選擇柵極驅(qū)動IC時的關(guān)鍵參數(shù)。
2023-06-16 06:04:07

為何使用 SiC MOSFET

要充分認識 SiC MOSFET 的功能,一種有用的方法就是將它們與同等的硅器件進行比較。SiC 器件可以阻斷的電壓是硅器件的 10 倍,具有更高的電流密度,能夠以 10 倍的更快速度在導通和關(guān)斷
2017-12-18 13:58:36

從硅過渡到碳化硅,MOSFET結(jié)構(gòu)及性能優(yōu)劣勢對比

MOSFET柵極為低電平時,其漏電壓上升直至使SiC JFET的GS電壓達到其關(guān)斷的負壓時,這時器件關(guān)斷。Cascode結(jié)構(gòu)主要的優(yōu)點是相同的導通電阻有更小的芯片面積,由于柵極開關(guān)由Si MOSFET控制
2022-03-29 10:58:06

使采用了SiC MOSFET的高效AC/DC轉(zhuǎn)換器的設(shè)計更容易

,而且結(jié)構(gòu)簡單 ??娠@著減少SiC MOSFET選型和柵極驅(qū)動電路調(diào)整等 設(shè)計和評估工時 。 內(nèi)置各種保護功能 ,基本上只需根據(jù)要設(shè)計的電源規(guī)格設(shè)置外置元器件的常數(shù)即可,使利用了SiC MOSFET性能
2022-07-27 11:00:52

SiC模塊柵極誤導通的處理方法

和CN4的+18V、CN3和CN6的-3V為驅(qū)動器的電源。電路增加了CGS和米勒鉗位MOSFET,使包括柵極電阻在內(nèi)均可調(diào)整。將該柵極驅(qū)動器與全SiC功率模塊的柵極連接,來確認柵極電壓的升高情況
2018-11-27 16:41:26

功率MOSFET結(jié)構(gòu)及特點

2的結(jié)構(gòu),用深度來換面積,將柵極埋入基體,形成垂直的溝道,從而保持溝道的寬度,這樣形成的結(jié)構(gòu)稱為垂直導電的溝槽結(jié)構(gòu)。圖3:N溝道垂直導電的溝槽結(jié)構(gòu)及Rdson組成 工作原理是:柵極加正向電壓
2016-10-10 10:58:30

功率MOSFET柵極電荷特性

和漏電荷Qgs:柵極電荷柵極電荷測試的原理圖和相關(guān)波形見圖1所示。在測量電路,柵極使用恒流源驅(qū)動,也就是使用恒流源IG給測試器件的柵極充電,漏電流ID由外部電路提供,VDS設(shè)定為最大
2017-01-13 15:14:07

功率MOSFET結(jié)構(gòu)特點是什么?為什么要在柵極之間并聯(lián)一個電阻?

功率MOSFET結(jié)構(gòu)特點為什么要在柵極之間并聯(lián)一個電阻呢?
2021-03-10 06:19:21

反激開關(guān)MOSFET流出的電流精細剖析

,導致Cp上的電壓降低。反激開關(guān)MOSFET 流出的電流(Is)波形的轉(zhuǎn)折點的分析。 很多工程師在電源開發(fā)調(diào)試過程,測的的波形的一些關(guān)鍵點不是很清楚,下面針對反激電源實測波形來分析一下。問題一
2018-10-10 20:44:59

基于MOSFET的整流器件設(shè)計方法

本帖最后由 liuyongwangzi 于 2018-5-30 10:03 編輯 使用整流器配置的四個二管是對AC電壓進行整流的最簡單、也是最常規(guī)的方法。在一個整流器運行一個
2018-05-30 10:01:53

如何使用電流驅(qū)動器BM60059FV-C驅(qū)動SiC MOSFET和IGBT?

驅(qū)動器的優(yōu)勢和期望,開發(fā)了一種測試板,其中測試了分立式IGBT和SiC-MOSFET。標準電壓驅(qū)動器也在另一塊板上實現(xiàn),見圖3?!     D3.帶電壓驅(qū)動器(頂部)和電流驅(qū)動器(底部)的半
2023-02-21 16:36:47

如何定義柵極電阻器、自舉電容器以及為什么高側(cè)柵極驅(qū)動器可能需要對MOSFET施加一些電阻?

!它在高側(cè)柵極驅(qū)動器連接(R57、R58 和 R59)也有 4R7 電阻,我不明白為什么需要這些。是否有任何設(shè)計指南可以告訴我如何定義柵極電阻器、自舉電容器以及為什么高側(cè)柵極驅(qū)動器可能需要對 MOSFET 施加一些電阻?
2023-04-19 06:36:06

如何很好地驅(qū)動上MOSFET

MOSFET一般工作在拓撲結(jié)構(gòu)模式下,如圖1所示。由于下橋MOSFET驅(qū)動電壓的參考點為地,較容易設(shè)計驅(qū)動電路,而上的驅(qū)動電壓是跟隨相線電壓浮動的,因此如何很好地驅(qū)動上MOSFET成了設(shè)...
2021-07-27 06:44:41

如何避免二整流器的導通損耗?

MOSFET很難在圖騰柱PFC拓撲的連續(xù)導通模式(CCM)下工作,因為體二管的反向恢復(fù)特性很差。碳化硅(SiCMOSFET采用全新的技術(shù),比Si MOSFET具有更勝一籌的開關(guān)性能、極小
2022-04-19 08:00:00

實現(xiàn)隔離柵極驅(qū)動器

所需的高電流。在此,柵極驅(qū)動器以差分方式驅(qū)動脈沖變壓器的原邊,兩個副邊繞組驅(qū)動半的各個柵極。在這種應(yīng)用,脈沖變壓器具有顯著優(yōu)勢,不需要用隔離電源來驅(qū)動副邊MOSFET。圖3. 脈沖變壓器半柵極
2018-10-23 11:49:22

實現(xiàn)隔離柵極驅(qū)動器的設(shè)計基礎(chǔ)

的一個潛在問題是,僅有一個隔離輸入通道,而且依賴高壓驅(qū)動器來提供通道所需的時序匹配以及應(yīng)用所需的死區(qū)。另一問題是,高壓柵極驅(qū)動器并無電流隔離,而是依賴結(jié)隔離來分離同一IC的上臂驅(qū)動電壓和下橋臂驅(qū)動
2018-10-16 16:00:23

實現(xiàn)隔離柵極驅(qū)動器的設(shè)計途徑

MOSFET柵極充電所需的高電流。在此,柵極驅(qū)動器以差分方式驅(qū)動脈沖變壓器的原邊,兩個副邊繞組驅(qū)動半的各個柵極。在這種應(yīng)用,脈沖變壓器具有顯著優(yōu)勢,不需要用隔離電源來驅(qū)動副邊MOSFET.  圖3.
2018-09-26 09:57:10

標準硅MOSFET功率晶體管的結(jié)構(gòu)/二次擊穿/損耗

  1、結(jié)構(gòu)  第一個功率MOSFET - 與小信號MOSFET不同 -出現(xiàn)在1978年左右上市,主要供應(yīng)商是Siliconix。它們是所謂的V-MOS設(shè)備。MOSFET的特點是和漏之間的表面
2023-02-20 16:40:52

氮化鎵功率晶體管與Si SJMOS和SiC MOS晶體管對分分析哪個好?

是Qgd,它描述了柵極開關(guān)和開關(guān)關(guān)斷時間關(guān)斷所需的電荷。這兩個參數(shù)指示關(guān)斷能力和損耗,從而指示最大工作頻率和效率。關(guān)斷時間toff通常不顯示在晶體管數(shù)據(jù)手冊,但可以根據(jù)參考書[1]在給定的開關(guān)電壓
2023-02-27 09:37:29

汽車類雙通道SiC MOSFET柵極驅(qū)動器包括BOM及層圖

描述此參考設(shè)計是一種通過汽車認證的隔離柵極驅(qū)動器解決方案,可在半配置驅(qū)動碳化硅 (SiC) MOSFET。此設(shè)計分別為雙通道隔離柵極驅(qū)動器提供兩個推挽偏置電源,其中每個電源提供 +15V
2018-10-16 17:15:55

溝槽結(jié)構(gòu)SiC-MOSFET與實際產(chǎn)品

本章將介紹最新的第三代SiC-MOSFET,以及可供應(yīng)的SiC-MOSFET的相關(guān)信息。獨有的雙溝槽結(jié)構(gòu)SiC-MOSFETSiC-MOSFET不斷發(fā)展的進程,ROHM于世界首家實現(xiàn)了溝槽柵極
2018-12-05 10:04:41

淺析SiC-MOSFET

MOS的結(jié)構(gòu)碳化硅MOSFETSiC MOSFET)N+區(qū)和P井摻雜都是采用離子注入的方式,在1700℃溫度中進行退火激活。一個關(guān)鍵的工藝是碳化硅MOS柵氧化物的形成。由于碳化硅材料中同時有Si和C
2019-09-17 09:05:05

測量SiC MOSFET柵-電壓時的注意事項

SiCMOSFET具有出色的開關(guān)特性,但由于其開關(guān)過程電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識 SiC功率元器件“SiC MOSFET結(jié)構(gòu)柵極電壓動作-前言”中介
2022-09-20 08:00:00

用于PFC的碳化硅MOSFET介紹

MOSFET的開關(guān)損耗為0.6 mJ。這大約是IGBT測量的2.5 mJ的四分之一。在每種情況下,均在 800 V、漏/拉電流 10 A、環(huán)境溫度 150 °C 和最佳柵極-發(fā)射閾值電壓下進行測試(圖
2023-02-22 16:34:53

電機控制MOSFET和IGBT基礎(chǔ)知識

。雖然有許多方式來繪制MOSFET管,但最常見的符號如圖2。注意有且只有三端連接:、漏柵極柵極控制從到漏的電流。較小的MOSFET可以在標準的MOS IC裸芯上直接制造,因此它可以是單芯片
2016-01-27 17:22:21

碳化硅MOSFET是如何制造的?如何驅(qū)動碳化硅場效應(yīng)管?

柵極處獲得 20V,以便在最小 RDSon 時導通?! ‘斠?V關(guān)閉SiC MOSFET時,必須考慮一種效應(yīng),即Si MOSFET已知的米勒效應(yīng)。當器件用于配置時,這種影響可能會出現(xiàn)問題,尤其是
2023-02-24 15:03:59

碳化硅SiC MOSFET:低導通電阻和高可靠性的肖特基勢壘二

小型化。然而,必須首先解決一個問題:SiC MOSFET反向操作期間,體二管雙極性導通會造成導通電阻性能下降。將肖特基勢壘二管嵌入MOSFET,使體二管失活的器件結(jié)構(gòu),但發(fā)現(xiàn)用嵌入SBD代替
2023-04-11 15:29:18

羅姆成功實現(xiàn)SiC-SBD與SiC-MOSFET的一體化封裝

低,可靠性高,在各種應(yīng)用中非常有助于設(shè)備實現(xiàn)更低功耗和小型化。本產(chǎn)品于世界首次※成功實現(xiàn)SiC-SBD與SiC-MOSFET的一體化封裝。內(nèi)部二管的正向電壓(VF)降低70%以上,實現(xiàn)更低損耗的同時
2019-03-18 23:16:12

設(shè)計中使用的電源IC:專為SiC-MOSFET優(yōu)化

輸入動作禁止功能)、過流保護、二次側(cè)電壓過壓保護等。在高耐壓應(yīng)用,與Si-MOSFET相比,SiC-MOSFET具有開關(guān)損耗及傳導損耗少、溫度帶來的特性波動小的優(yōu)點。這些優(yōu)點有利于解決近年來的重要課題
2018-11-27 16:54:24

降低二整流器的導通損耗方案

MOSFET很難在圖騰柱PFC拓撲的連續(xù)導通模式(CCM)下工作,因為體二管的反向恢復(fù)特性很差。碳化硅(SiCMOSFET采用全新的技術(shù),比Si MOSFET具有更勝一籌的開關(guān)性能、極小
2022-05-30 10:01:52

隔離柵極驅(qū)動器揭秘

IGBT/功率 MOSFET 是一種電壓控制型器件,可用作電源電路、電機驅(qū)動器和其它系統(tǒng)的開關(guān)元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是和漏,而對于IGBT,它們被稱為
2018-10-25 10:22:56

隔離柵極驅(qū)動器的揭秘

Sanket Sapre摘要IGBT/功率MOSFET是一種電壓控制型器件,可用作電源電路、電機驅(qū)動器和其它系統(tǒng)的開關(guān)元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是和漏,而對
2018-11-01 11:35:35

集成高側(cè)MOSFET的開關(guān)損耗分析

1的t1),電壓(VGS)正接近MOSFET的閾值電壓,VTH和漏電流為零。因此,在此期間的功率損耗為零。在t2時段,MOSFET的寄生輸入電容(CISS)開始充電,而漏電流開始流經(jīng)
2022-11-16 08:00:15

面向SiC MOSFET的STGAP2SICSN隔離單通道柵極驅(qū)動

單通道STGAP2SiCSN柵極驅(qū)動器旨在優(yōu)化SiC MOSFET的控制,采用節(jié)省空間的窄體SO-8封裝,通過精確的PWM控制提供強大穩(wěn)定的性能。隨著SiC技術(shù)廣泛應(yīng)用于提高功率轉(zhuǎn)換效率,STGAP2SiCSN簡化了設(shè)計、節(jié)省了空間,并增強了節(jié)能型動力系統(tǒng)、驅(qū)動器和控制的穩(wěn)健性和可靠性。
2023-09-05 07:32:19

驅(qū)動器引腳的 MOSFET 的驅(qū)動電路開關(guān)耗損改善措施

的影響,而且由于 RG_EXT 是外置電阻,因此也可調(diào)。下面同時列出公式(1)用以比較。能給我們看一下比較數(shù)據(jù)嗎?這里有雙脈沖測試的比較數(shù)據(jù)。這是為了將以往產(chǎn)品和具有驅(qū)動器引腳的 SiC MOSFET
2020-11-10 06:00:00

驅(qū)動器引腳的效果:雙脈沖測試比較

所示的電路圖進行了雙脈沖測試,在測試,使低邊(LS)的MOSFET執(zhí)行開關(guān)動作。高邊(HS)MOSFET則通過RG_EXT連接柵極引腳和引腳或驅(qū)動器引腳,并且僅用于體二管的換流工作。在電路圖
2022-06-17 16:06:12

ADI隔離柵極驅(qū)動器和WOLFSPEED SiC MOSFET

ADI隔離柵極驅(qū)動器和WOLFSPEED SiC MOSFET
2021-05-27 13:55:0830

淺談柵極-源極電壓產(chǎn)生的浪涌

中,我們將對相應(yīng)的對策進行探討。關(guān)于柵極-源極間電壓產(chǎn)生的浪涌,在之前發(fā)布的Tech Web基礎(chǔ)知識 SiC功率元器件 應(yīng)用篇的“SiC MOSFET:橋式結(jié)構(gòu)柵極-源極間電壓動作”中已進行了詳細說明。
2021-06-12 17:12:002563

測量柵極和源極之間電壓時需要注意的事項

SiC MOSFET具有出色的開關(guān)特性,但由于其開關(guān)過程中電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識 SiC功率元器件“SiC MOSFET:橋式結(jié)構(gòu)柵極-源極間電壓動作-前言”中介紹的需要準確測量柵極和源極之間產(chǎn)生的浪涌。
2022-09-14 14:28:53753

第三代雙溝槽結(jié)構(gòu)SiC-MOSFET介紹

SiC-MOSFET不斷發(fā)展的進程中,ROHM于世界首家實現(xiàn)了溝槽柵極結(jié)構(gòu)SiC-MOSFET的量產(chǎn)。這就是ROHM的第三代SiC-MOSFET。溝槽結(jié)構(gòu)在Si-MOSFET中已被廣為采用,在SiC-MOSFET中由于溝槽結(jié)構(gòu)有利于降低導通電阻也備受關(guān)注。
2023-02-08 13:43:211381

SiC MOSFET:橋式結(jié)構(gòu)柵極源極間電壓動作-SiC MOSFET的橋式結(jié)構(gòu)

在探討“SiC MOSFET:橋式結(jié)構(gòu)中Gate-Source電壓動作”時,本文先對SiC MOSFET的橋式結(jié)構(gòu)和工作進行介紹,這也是這個主題的前提。
2023-02-08 13:43:23340

SiC MOSFET:橋式結(jié)構(gòu)柵極-源極間電壓動作-SiC MOSFET柵極驅(qū)動電路和Turn-on/Turn-off動作

本文將針對上一篇文章中介紹過的SiC MOSFET橋式結(jié)構(gòu)柵極驅(qū)動電路及其導通(Turn-on)/關(guān)斷( Turn-off)動作進行解說。
2023-02-08 13:43:23491

SiC MOSFET:橋式結(jié)構(gòu)柵極-源極間電壓動作-橋式電路的開關(guān)產(chǎn)生的電流和電壓

在上一篇文章中,對SiC MOSFET橋式結(jié)構(gòu)柵極驅(qū)動電路的導通(Turn-on)/關(guān)斷( Turn-off)動作進行了解說。
2023-02-08 13:43:23291

SiC MOSFET:橋式結(jié)構(gòu)柵極-源極間電壓動作-低邊開關(guān)導通時的Gate-Source間電壓動作

上一篇文章中,簡單介紹了SiC MOSFET橋式結(jié)構(gòu)柵極驅(qū)動電路的開關(guān)工作帶來的VDS和ID的變化所產(chǎn)生的電流和電壓情況。本文將詳細介紹SiC MOSFET在LS導通時的動作情況。
2023-02-08 13:43:23300

SiC MOSFET:橋式結(jié)構(gòu)柵極-源極間電壓動作-低邊開關(guān)關(guān)斷時的柵極-源極間電壓動作

上一篇文章中介紹了LS開關(guān)導通時柵極 – 源極間電壓動作。本文將繼續(xù)介紹LS關(guān)斷時的動作情況。低邊開關(guān)關(guān)斷時的柵極 – 源極間電壓動作:下面是表示LS MOSFET關(guān)斷時的電流動作的等效電路和波形示意圖。
2023-02-08 13:43:23399

SiC MOSFET柵極-源極電壓的浪涌抑制方法-負電壓浪涌對策

本文的關(guān)鍵要點?通過采取措施防止SiC MOSFET柵極-源極間電壓的負電壓浪涌,來防止SiC MOSFET的LS導通時,SiC MOSFET的HS誤導通。?具體方法取決于各電路中所示的對策電路的負載。
2023-02-09 10:19:16589

SiC MOSFET柵極-源極電壓的浪涌抑制方法-浪涌抑制電路的電路板布局注意事項

關(guān)于SiC功率元器件中柵極-源極間電壓產(chǎn)生的浪涌,在之前發(fā)布的Tech Web基礎(chǔ)知識 SiC功率元器件 應(yīng)用篇的“SiC MOSFET:橋式結(jié)構(gòu)柵極-源極間電壓動作”中已進行了詳細說明,如果需要了解,請參閱這篇文章。
2023-02-09 10:19:17707

SiC MOSFET結(jié)構(gòu)及特性

SiC功率MOSFET內(nèi)部晶胞單元的結(jié)構(gòu),主要有二種:平面結(jié)構(gòu)和溝槽結(jié)構(gòu)。平面SiC MOSFET結(jié)構(gòu),
2023-02-16 09:40:102938

溝槽結(jié)構(gòu)SiC-MOSFET與實際產(chǎn)品

SiC-MOSFET不斷發(fā)展的進程中,ROHM于世界首家實現(xiàn)了溝槽柵極結(jié)構(gòu)SiC-MOSFET的量產(chǎn)。這就是ROHM的第三代SiC-MOSFET。
2023-02-24 11:48:18426

SiC MOSFET的橋式結(jié)構(gòu)柵極驅(qū)動電路

下面給出的電路圖是在橋式結(jié)構(gòu)中使用SiC MOSFET時最簡單的同步式boost電路。該電路中使用的SiC MOSFET的高邊(HS)和低邊(LS)是交替導通的,為了防止HS和LS同時導通,設(shè)置了兩個SiC MOSFET均為OFF的死區(qū)時間。右下方的波形表示其門極信號(VG)時序。
2023-02-27 13:41:58737

SiC MOSFET學習筆記(三)SiC驅(qū)動方案

驅(qū)動芯片,需要考慮如下幾個方面: 驅(qū)動電平與驅(qū)動電流的要求首先,由于SiC MOSFET器件需要工作在高頻開關(guān)場合,其面對的由于寄生參數(shù)所帶來的影響更加顯著。由于SiC MOSFET本身柵極開啟電壓
2023-02-27 14:42:0479

溝槽結(jié)構(gòu)SiC MOSFET常見的類型

SiC MOSFET溝槽結(jié)構(gòu)柵極埋入基體中形成垂直溝道,盡管其工藝復(fù)雜,單元一致性比平面結(jié)構(gòu)差。
2023-04-01 09:37:171329

測量SiC MOSFET柵-源電壓時的注意事項:一般測量方法

SiC MOSFET具有出色的開關(guān)特性,但由于其開關(guān)過程中電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識 SiC功率元器件“SiC MOSFET:橋式結(jié)構(gòu)柵極-源極間電壓動作-前言”中介
2023-04-06 09:11:46731

R課堂 | SiC MOSFET柵極-源極電壓的浪涌抑制方法-總結(jié)

布局注意事項。 橋式結(jié)構(gòu)SiC MOSFET柵極信號,由于工作時MOSFET之間的動作相互關(guān)聯(lián),因此導致SiC MOSFET的柵-源電壓中會產(chǎn)生意外的電壓浪涌。這種浪涌的抑制方法除了增加抑制電路外,電路板的版圖布局也很重要。希望您根據(jù)具體情況,參考本系列文章中介紹的
2023-04-13 12:20:02814

測量SiC MOSFET柵-源電壓時的注意事項:一般測量方法

SiC MOSFET具有出色的開關(guān)特性,但由于其開關(guān)過程中電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識 SiC功率元器件“SiC MOSFET:橋式結(jié)構(gòu)柵極-源極間電壓動作-前言”中介
2023-05-08 11:23:14644

MOSFET柵極電路電壓對電流的影響?MOSFET柵極電路電阻的作用?

MOSFET柵極電路電壓對電流的影響?MOSFET柵極電路電阻的作用? MOSFET(金屬-氧化物-半導體場效應(yīng)晶體管)是一種廣泛應(yīng)用于電子設(shè)備中的半導體器件。在MOSFET中,柵極電路的電壓和電阻
2023-10-22 15:18:121369

SiC MOSFET:橋式結(jié)構(gòu)柵極-源極間電壓動作

SiC MOSFET:橋式結(jié)構(gòu)柵極-源極間電壓動作
2023-12-07 14:34:17223

SiC MOSFET柵極驅(qū)動電路和Turn-on/Turn-off動作

SiC MOSFET柵極驅(qū)動電路和Turn-on/Turn-off動作
2023-12-07 15:52:38185

SiC MOSFET的橋式結(jié)構(gòu)

SiC MOSFET的橋式結(jié)構(gòu)
2023-12-07 16:00:26157

MOSFET柵極電路常見作用有哪些?MOSFET柵極電路電壓對電流的影響?

MOSFET柵極電路常見的作用有哪些?MOSFET柵極電路電壓對電流的影響? MOSFET(金屬氧化物半導體場效應(yīng)晶體管)是一種非常重要的電子器件,廣泛應(yīng)用于各種電子電路中。MOSFET柵極電路
2023-11-29 17:46:40571

已全部加載完成