一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

ICCV 2023 | 超越SAM!EntitySeg:更少的數(shù)據(jù),更高的分割質(zhì)量

智能感知與物聯(lián)網(wǎng)技術(shù)研究所 ? 來源:未知 ? 2023-10-02 10:40 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

稠密圖像分割問題一直在計算機(jī)視覺領(lǐng)域中備受關(guān)注。無論是在 Adobe 旗下的 Photoshop 等重要產(chǎn)品中,還是其他實(shí)際應(yīng)用場景中,分割模型的泛化和精度都被賦予了極高的期望。對于這些分割模型來說,需要在不同的圖像領(lǐng)域、新的物體類別以及各種圖像分辨率和質(zhì)量下都能夠保持魯棒性。為了解決這個問題,早在 SAM[6] 模型一年之前,一種不考慮類別的實(shí)體分割任務(wù) [1] 被提出,作為評估模型泛化能力的一種統(tǒng)一標(biāo)準(zhǔn)。

在本文中,High-Quality Entity Segmentation 對分割問題進(jìn)行了全新的探索,從以下三個方面取得了顯著的改進(jìn):

1. 更優(yōu)的分割質(zhì)量:正如上圖所示,EntitySeg 在數(shù)值指標(biāo)和視覺表現(xiàn)方面都相對于 SAM 有更大的優(yōu)勢。令人驚訝的是,這種優(yōu)勢是基于僅占訓(xùn)練數(shù)據(jù)量千分之一的數(shù)據(jù)訓(xùn)練取得的。

2. 更少的高質(zhì)量數(shù)據(jù)需求:相較于 SAM 使用的千萬級別的訓(xùn)練數(shù)據(jù)集,EntitySeg 數(shù)據(jù)集僅含有 33,227 張圖像。盡管數(shù)據(jù)量相差千倍,但 EntitySeg 卻取得了可媲美的性能,這要?dú)w功于其標(biāo)注質(zhì)量,為模型提供了更高質(zhì)量的數(shù)據(jù)支持。

3. 更一致的輸出細(xì)粒度(基于實(shí)體標(biāo)準(zhǔn)):從輸出的分割圖中,我們可以清晰地看到 SAM 輸出了不同粒度的結(jié)果,包括細(xì)節(jié)、部分和整體(如瓶子的蓋子、商標(biāo)、瓶身)。然而,由于 SAM 需要對不同部分的人工干預(yù)處理,這對于自動化輸出分割的應(yīng)用而言并不理想。相比之下,EntitySeg 的輸出在粒度上更加一致,并且能夠輸出類別標(biāo)簽,對于后續(xù)任務(wù)更加友好。

在闡述了這項工作對稠密分割技術(shù)的新突破后,接下來的內(nèi)容中介紹 EntitySeg 數(shù)據(jù)集的特點(diǎn)以及提出的算法 CropFormer。

wKgaomUs_uaAD2aRAACSqit3Alw707.png

論文鏈接:https://arxiv.org/abs/2211.05776

代碼鏈接:

https://github.com/qqlu/Entity/blob/main/Entityv2/README.md

主頁鏈接:

http://luqi.info/entityv2.github.io/

根據(jù) Marr 計算機(jī)視覺教科書中的理論,人類的識別系統(tǒng)是無類別的。即使對于一些不熟悉的實(shí)體,我們也能夠根據(jù)相似性進(jìn)行識別。因此,不考慮類別的實(shí)體分割更貼近人類識別系統(tǒng),不僅可以作為一種更基礎(chǔ)的任務(wù),還可以輔助于帶有類別分割任務(wù) [2]、開放詞匯分割任務(wù) [3] 甚至圖像編輯任務(wù) [4]。與全景分割任務(wù)相比,實(shí)體分割將“thing”和“stuff”這兩個大類進(jìn)行了統(tǒng)一,更加符合人類最基本的識別方式。

wKgaomUs_uaAaVeYAAAl6LOgh3c146.png ?

EntitySeg數(shù)據(jù)集

由于缺乏現(xiàn)有的實(shí)體分割數(shù)據(jù),作者在其工作 [1] 使用了現(xiàn)有的 COCO、ADE20K 以及 Cityscapes 全景分割數(shù)據(jù)集驗證了實(shí)體任務(wù)下模型的泛化能力。然而,這些數(shù)據(jù)本身是在有類別標(biāo)簽的體系下標(biāo)注的(先建立一個類別庫,在圖片中搜尋相關(guān)的類別進(jìn)行定位標(biāo)注),這種標(biāo)注過程并不符合實(shí)體分割任務(wù)的初衷——圖像中每一個區(qū)域均是有效的,哪怕這些區(qū)域無法用言語來形容或者被 Blur 掉,都應(yīng)該被定位標(biāo)注。

此外,受限于提出年代的設(shè)備,COCO 等數(shù)據(jù)集的圖片域以及圖片分辨率也相對單一。因此基于現(xiàn)有數(shù)據(jù)集下訓(xùn)練出的實(shí)體分割模型也并不能很好地體現(xiàn)實(shí)體分割任務(wù)所帶來的泛化能力。最后,原作者團(tuán)隊在提出實(shí)體分割任務(wù)的概念后進(jìn)一步貢獻(xiàn)了高質(zhì)量細(xì)粒度實(shí)體分割數(shù)據(jù)集 EntitySeg 及其對應(yīng)方法。EntitySeg 數(shù)據(jù)集是由 Adobe 公司 19 萬美元贊助標(biāo)注完成,已經(jīng)開源貢獻(xiàn)給學(xué)術(shù)界使用。

項目主頁:

http://luqi.info/entityv2.github.io/數(shù)據(jù)集有三個重要特性:1. 數(shù)據(jù)集匯集了來自公開數(shù)據(jù)集和學(xué)術(shù)網(wǎng)絡(luò)的 33,227 張圖片。這些圖片涵蓋了不同的領(lǐng)域,包括風(fēng)景、室內(nèi)外場景、卡通畫、簡筆畫、電腦游戲和遙感場景等。2. 標(biāo)注過程在無類別限制下進(jìn)行的掩膜標(biāo)注,并且可以覆蓋整幅圖像。3. 圖片分辨率更高,標(biāo)注更精細(xì)。如上圖所示,即使相比 COCO 和 ADE20K 數(shù)據(jù)集的原始低分辨率圖片及其標(biāo)注,EntitySeg 的實(shí)體標(biāo)注更全且更精細(xì)。最后,為了讓 EntitySeg 數(shù)據(jù)集更好地服務(wù)于學(xué)術(shù)界,11580 張圖片在標(biāo)注實(shí)體掩膜之后,以開放標(biāo)簽的形式共標(biāo)注了 643 個類別。EntitySeg、COCO 以及 ADE20K 數(shù)據(jù)集的統(tǒng)計特性對比如下:wKgaomUs_uaADlXLAAEABS33bTg176.png通過和 COCO 以及 ADE20K 的數(shù)據(jù)對比,可以看出 EntitySeg 數(shù)據(jù)集圖片分辨率更高(平均圖片尺寸 2700)、實(shí)體數(shù)量更多(每張圖平均 18.1 個實(shí)體)、掩膜標(biāo)注更為復(fù)雜(實(shí)體平均復(fù)雜度 0.719)。極限情況下,EntitySeg 的圖片尺寸可達(dá)到 10000 以上。與 SAM 數(shù)據(jù)集不同,EntitySeg 更加強(qiáng)調(diào)小而精,試圖做到對圖片中的每個實(shí)體得到最為精細(xì)的邊緣標(biāo)注。此外,EntitySeg 保留了圖片和對應(yīng)標(biāo)注的原始尺寸,更有利于高分辨率分割模型的學(xué)術(shù)探索。基于 EntitySeg 數(shù)據(jù)集,作者衡量了現(xiàn)有分割模型在不同分割任務(wù)(無類別實(shí)體分割,語義分割,實(shí)例分割以及全景分割)的性能以及和 SAM 在 zero-shot 實(shí)體級別的分割能力。

wKgaomUs_uaARWVxAAEMAsNKrjY791.png

wKgaomUs_uaAU8AmAACkTHk6Ig4993.png

wKgaomUs_ueAGTK_AAAuhh9-KLM590.png ?

CropFormer算法框架

除此之外,高分辨率圖片和精細(xì)化掩膜給分割任務(wù)帶來了新的挑戰(zhàn)。為了節(jié)省硬件內(nèi)存需求,分割模型需要壓縮高分辨率圖片及標(biāo)注進(jìn)行訓(xùn)練和測試進(jìn)而導(dǎo)致分割質(zhì)量的降低。為了解決這一問題,作者提出了 CropFormer 框架來解決高分辨率圖片分割問題。CropFormer 受到 Video-Mask2Former [5] 的啟發(fā), 利用一組 query 連結(jié)壓縮為低分辨率的全圖和保持高分辨率的裁剪圖的相同實(shí)體。因此,CropFormer 可以同時保證圖片全局和區(qū)域細(xì)節(jié)屬性。CropFormer 是根據(jù) EntitySeg 高質(zhì)量數(shù)據(jù)集的特點(diǎn)提出的針對高分辨率圖像的實(shí)例/實(shí)體分割任務(wù)的 baseline 方法,更加迎合當(dāng)前時代圖片質(zhì)量的需求。wKgaomUs_ueAKPi7AAH2IXUrEjs806.png

最后在補(bǔ)充材料中,作者展示了更多的 EntitySeg 數(shù)據(jù)集以及 CropFormer 的可視化結(jié)果。下圖為更多數(shù)據(jù)標(biāo)注展示:

下圖為 CropFormer 模型測試結(jié)果:

參考文獻(xiàn)

[1] Open-World Entity Segmentation. TAPMI 2022.[2] CA-SSL: Class-agnostic Semi-Supervised Learning for Detection and Segmentation. ECCV 2022.[3] Open-Vocabulary Panoptic Segmentation with MaskCLIP. ICML 2023.[4] SceneComposer: Any-Level Semantic Image Synthesis. CVPR 2023.[5] Masked-attention Mask Transformer for Universal Image Segmentation. CVPR 2022.

[6] Segment Anything. ICCV 2023.


原文標(biāo)題:ICCV 2023 | 超越SAM!EntitySeg:更少的數(shù)據(jù),更高的分割質(zhì)量

文章出處:【微信公眾號:智能感知與物聯(lián)網(wǎng)技術(shù)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標(biāo)題:ICCV 2023 | 超越SAM!EntitySeg:更少的數(shù)據(jù),更高的分割質(zhì)量

文章出處:【微信號:tyutcsplab,微信公眾號:智能感知與物聯(lián)網(wǎng)技術(shù)研究所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    格靈深瞳六篇論文入選ICCV 2025

    近日,國際頂級會議ICCV 2025(計算機(jī)視覺國際大會)公布論文錄用結(jié)果,格靈深瞳團(tuán)隊共有6篇論文入選。
    的頭像 發(fā)表于 07-07 18:23 ?420次閱讀

    Nullmax端到端自動駕駛最新研究成果入選ICCV 2025

    近日,國際計算機(jī)視覺大會 ICCV 2025 正式公布論文錄用結(jié)果,Nullmax 感知團(tuán)隊在端到端自動駕駛方向的最新研究成果《HiP-AD: Hierarchical
    的頭像 發(fā)表于 07-05 15:40 ?400次閱讀
    Nullmax端到端自動駕駛最新研究成果入選<b class='flag-5'>ICCV</b> 2025

    理想汽車八篇論文入選ICCV 2025

    近日,ICCV 2025(國際計算機(jī)視覺大會)公布論文錄用結(jié)果,理想汽車共有8篇論文入選,其中5篇來自自動駕駛團(tuán)隊,3篇來自基座模型團(tuán)隊。ICCV作為計算機(jī)視覺領(lǐng)域的頂級學(xué)術(shù)會議,每兩年舉辦一次
    的頭像 發(fā)表于 07-03 13:58 ?256次閱讀

    超聲波T-SAM與C-SAM模式的區(qū)別

    本文介紹了超聲波的T-SAM與C-SAM兩種模式的區(qū)別。
    的頭像 發(fā)表于 05-21 15:26 ?297次閱讀
    超聲波T-<b class='flag-5'>SAM</b>與C-<b class='flag-5'>SAM</b>模式的區(qū)別

    SAM IoT Wx v2硬件用戶指南

    電子發(fā)燒友網(wǎng)站提供《SAM IoT Wx v2硬件用戶指南.pdf》資料免費(fèi)下載
    發(fā)表于 01-21 14:02 ?0次下載
    <b class='flag-5'>SAM</b> IoT Wx v2硬件用戶指南

    誠邁科技榮獲vivo 2023年度系統(tǒng)測試業(yè)務(wù)優(yōu)秀質(zhì)量

    近日,誠邁科技以專業(yè)的產(chǎn)品質(zhì)量精神、穩(wěn)定的交付以及優(yōu)質(zhì)的服務(wù),榮獲vivo 2023年度系統(tǒng)測試業(yè)務(wù)優(yōu)秀質(zhì)量獎。誠邁科技再次獲得vivo頒發(fā)的該獎項,體現(xiàn)了其在智能終端技術(shù)領(lǐng)域的優(yōu)秀質(zhì)量
    的頭像 發(fā)表于 11-06 16:30 ?930次閱讀

    GB/T6451-2023

    電力變壓器技術(shù)參數(shù)要求,2023版,有需要的看一下。還有其它的,咋帶附件?
    發(fā)表于 11-04 15:49

    畫面分割器怎么調(diào)試

    畫面分割器,通常指的是視頻畫面分割器,它是一種可以將一個視頻信號分割成多個小畫面的設(shè)備。這種設(shè)備廣泛應(yīng)用于監(jiān)控系統(tǒng)、視頻會議、多畫面顯示等場景。調(diào)試畫面分割器是一個技術(shù)性很強(qiáng)的工作,需
    的頭像 發(fā)表于 10-17 09:32 ?1072次閱讀

    畫面分割器怎么連接

    器的基本原理 畫面分割器的工作原理是通過數(shù)字信號處理技術(shù),將多個視頻信號源(如攝像頭、DVR等)的圖像數(shù)據(jù)進(jìn)行處理,然后在一個監(jiān)視器上以分割的形式顯示出來。這些分割可以是1畫面、4畫面
    的頭像 發(fā)表于 10-17 09:29 ?980次閱讀

    畫面分割器有幾路主輸出

    畫面分割器,也稱為視頻分割器或多畫面處理器,是一種可以將一個視頻信號分割成多個獨(dú)立視頻畫面的設(shè)備。這種設(shè)備廣泛應(yīng)用于監(jiān)控系統(tǒng)、視頻會議、多媒體展示等領(lǐng)域,能夠?qū)⒍鄠€攝像頭的信號整合到一個顯示設(shè)備上
    的頭像 發(fā)表于 10-17 09:24 ?845次閱讀

    畫面分割器的主要功能

    畫面分割器,也稱為視頻分割器或多畫面分割器,是一種用于將多個視頻信號整合到一個顯示器上顯示的設(shè)備。這種設(shè)備廣泛應(yīng)用于監(jiān)控系統(tǒng)、視頻會議、指揮中心等場合,以便于用戶同時監(jiān)控多個視頻源。 畫面分割
    的頭像 發(fā)表于 10-17 09:22 ?1896次閱讀

    使用更少的輸入來監(jiān)控誤差信號

    電子發(fā)燒友網(wǎng)站提供《使用更少的輸入來監(jiān)控誤差信號.pdf》資料免費(fèi)下載
    發(fā)表于 09-20 09:04 ?0次下載
    使用<b class='flag-5'>更少</b>的輸入來監(jiān)控誤差信號

    圖像語義分割的實(shí)用性是什么

    圖像語義分割是一種重要的計算機(jī)視覺任務(wù),它旨在將圖像中的每個像素分配到相應(yīng)的語義類別中。這項技術(shù)在許多領(lǐng)域都有廣泛的應(yīng)用,如自動駕駛、醫(yī)學(xué)圖像分析、機(jī)器人導(dǎo)航等。 一、圖像語義分割的基本原理 1.1
    的頭像 發(fā)表于 07-17 09:56 ?908次閱讀

    圖像分割和語義分割的區(qū)別與聯(lián)系

    圖像分割和語義分割是計算機(jī)視覺領(lǐng)域中兩個重要的概念,它們在圖像處理和分析中發(fā)揮著關(guān)鍵作用。 1. 圖像分割簡介 圖像分割是將圖像劃分為多個區(qū)域或?qū)ο蟮倪^程。這些區(qū)域或?qū)ο缶哂邢嗨频膶傩?/div>
    的頭像 發(fā)表于 07-17 09:55 ?1949次閱讀

    圖像分割與目標(biāo)檢測的區(qū)別是什么

    圖像分割與目標(biāo)檢測是計算機(jī)視覺領(lǐng)域的兩個重要任務(wù),它們在許多應(yīng)用場景中都發(fā)揮著關(guān)鍵作用。然而,盡管它們在某些方面有相似之處,但它們的目標(biāo)、方法和應(yīng)用場景有很大的不同。本文將介紹圖像分割與目標(biāo)檢測
    的頭像 發(fā)表于 07-17 09:53 ?2353次閱讀