小波變換與傅里葉變換有什么區(qū)別嗎?小波變換與傅里葉變換哪個好?我們通過小波變換與傅里葉變換的詳細解讀、小波變換與傅里葉變換的區(qū)別、傅里葉變換缺點方面來解析。
小波變換與傅里葉變換的區(qū)別
傅立葉分析中,以單個變量(時間或頻率)的函數(shù)表示信號,因此,不能同時作時域頻域分析。
小波分析中,利用聯(lián)合時間一尺度函數(shù)分析信號,通過平移和伸縮構(gòu)造小波基,由于小波同時具有時間平移和多尺度分辨率的特點,可以同時進行時頻域分析。
傅里葉變換的不足
如上圖,最上邊的是頻率始終不變的平穩(wěn)信號。而下邊兩個則是頻率隨著時間改變的非平穩(wěn)信號,它們同樣包含和最上信號相同頻率的四個成分。做FFT后,我們發(fā)現(xiàn)這三個時域上有巨大差異的信號,頻譜(幅值譜)卻非常一致。尤其是下邊兩個非平穩(wěn)信號,我們從頻譜上無法區(qū)分它們,因為它們包含的四個頻率的信號的成分確實是一樣的,只是出現(xiàn)的先后順序不同。
可見,傅里葉變換處理非平穩(wěn)信有天生缺陷。它只能獲取一段信總體上包含哪些頻率的成分,但是對各成分出現(xiàn)的時刻并無所知。因此時域相差很大的兩個信 號,可能頻譜圖一樣。
小波變換與傅里葉變換詳解
從傅里葉變換到小波變換,并不是一個完全抽象的東西,可以講得很形象。小波變換有著明確的物理意義,如果我們從它的提出時所面對的問題看起,可以整理出非常清晰的思路。
下面就按照傅里葉--》短時傅里葉變換--》小波變換的順序,講一下為什么會出現(xiàn)小波這個東西、小波究竟是怎樣的思路。
一、傅里葉變換
關(guān)于傅里葉變換的基本概念在此我就不再贅述了,默認大家現(xiàn)在正處在理解了傅里葉但還沒理解小波的道路上。
下面我們主要將傅里葉變換的不足。即我們知道傅里葉變化可以分析信號的頻譜,那么為什么還要提出小波變換?答案“對非平穩(wěn)過程,傅里葉變換有局限性”??慈缦乱粋€簡單的信號:
做完FFT(快速傅里葉變換)后,可以在頻譜上看到清晰的四條線,信號包含四個頻率成分。
一切沒有問題。但是,如果是頻率隨著時間變化的非平穩(wěn)信號呢?
如上圖,最上邊的是頻率始終不變的平穩(wěn)信號。而下邊兩個則是頻率隨著時間改變的非平穩(wěn)信號,它們同樣包含和最上信號相同頻率的四個成分。做FFT后,我們發(fā)現(xiàn)這三個時域上有巨大差異的信號,頻譜(幅值譜)卻非常一致。尤其是下邊兩個非平穩(wěn)信號,我們從頻譜上無法區(qū)分它們,因為它們包含的四個頻率的信號的成分確實是一樣的,只是出現(xiàn)的先后順序不同。
可見,傅里葉變換處理非平穩(wěn)信號有天生缺陷。它只能獲取一段信號總體上包含哪些頻率的成分,但是對各成分出現(xiàn)的時刻并無所知。因此時域相差很大的兩個信號,可能頻譜圖一樣。
然而平穩(wěn)信號大多是人為制造出來的,自然界的大量信號幾乎都是非平穩(wěn)的,所以在比如生物醫(yī)學信號分析等領(lǐng)域的論文中,基本看不到單純傅里葉變換這樣naive的方法。
上圖所示的是一個正常人的事件相關(guān)電位。對于這樣的非平穩(wěn)信號,只知道包含哪些頻率成分是不夠的,我們還想知道各個成分出現(xiàn)的時間。知道信號頻率隨時間變化的情況,各個時刻的瞬時頻率及其幅值——這也就是時頻分析。
二、短時傅里葉變換(Short-time Fourier Transform,STFT)
一個簡單可行的方法就是——加窗。 “把整個時域過程分解成無數(shù)個等長的小過程,每個小過程近似平穩(wěn),再傅里葉變換,就知道在哪個時間點上出現(xiàn)了什么頻率了?!边@就是短時傅里葉變換。
看圖:
時域上分成一段一段做FFT,不就知道頻率成分隨著時間的變化情況了嗎!
用這樣的方法,可以得到一個信號的時頻圖了:
圖上既能看到10Hz, 25 Hz, 50 Hz, 100 Hz四個頻域成分,還能看到出現(xiàn)的時間。兩排峰是對稱的,所以大家只用看一排就行了。
是不是棒棒的?時頻分析結(jié)果到手。但是STFT依然有缺陷。
使用STFT存在一個問題,我們應該用多寬的窗函數(shù)?
窗太寬太窄都有問題:
窗太窄,窗內(nèi)的信號太短,會導致頻率分析不夠精準,頻率分辨率差。窗太寬,時域上又不夠精細,時間分辨率低。
?。ㄟ@里插一句,這個道理可以用海森堡不確定性原理來解釋。類似于我們不能同時獲取一個粒子的動量和位置,我們也不能同時獲取信號絕對精準的時刻和頻率。這也是一對不可兼得的矛盾體。我們不知道在某個瞬間哪個頻率分量存在,我們知道的只能是在一個時間段內(nèi)某個頻帶的分量存在。所以絕對意義的瞬時頻率是不存在的。)
看看實例效果吧:
上圖對同一個信號(4個頻率成分)采用不同寬度的窗做STFT,結(jié)果如右圖。用窄窗,時頻圖在時間軸上分辨率很高,幾個峰基本成矩形,而用寬窗則變成了綿延的矮山。但是頻率軸上,窄窗明顯不如下邊兩個寬窗精確。
所以窄窗口時間分辨率高、頻率分辨率低,寬窗口時間分辨率低、頻率分辨率高。對于時變的非穩(wěn)態(tài)信號,高頻適合小窗口,低頻適合大窗口。然而STFT的窗口是固定的,在一次STFT中寬度不會變化,所以STFT還是無法滿足非穩(wěn)態(tài)信號變化的頻率的需求。
三、小波變換
那么你可能會想到,讓窗口大小變起來,多做幾次STFT不就可以了嗎?!沒錯,小波變換就有著這樣的思路。
但事實上小波并不是這么做的(有人認為“小波變換就是根據(jù)算法,加不等長的窗,對每一小部分進行傅里葉變換”,這是不準確的。小波變換并沒有采用窗的思想,更沒有做傅里葉變換。)
至于為什么不采用可變窗的STFT呢,我認為是因為這樣做冗余會太嚴重,STFT做不到正交化,這也是它的一大缺陷。
于是小波變換的出發(fā)點和STFT還是不同的。STFT是給信號加窗,分段做FFT;而小波直接把傅里葉變換的基給換了——將無限長的三角函數(shù)基換成了有限長的會衰減的小波基。這樣不僅能夠獲取頻率,還可以定位到時間了~
【解釋】
來我們再回顧一下傅里葉變換吧,沒弄清傅里葉變換為什么能得到信號各個頻率成分的同學也可以再借我的圖理解一下。
傅里葉變換把無限長的三角函數(shù)作為基函數(shù):
這個基函數(shù)會伸縮、會平移(其實是兩個正交基的分解)??s得窄,對應高頻;伸得寬,對應低頻。然后這個基函數(shù)不斷和信號做相乘。某一個尺度(寬窄)下乘出來的結(jié)果,就可以理解成信號所包含的當前尺度對應頻率成分有多少。于是,基函數(shù)會在某些尺度下,與信號相乘得到一個很大的值,因為此時二者有一種重合關(guān)系。那么我們就知道信號包含該頻率的成分的多少。
仔細體會可以發(fā)現(xiàn),這一步其實是在計算信號和三角函數(shù)的相關(guān)性。
看,這兩種尺度能乘出一個大的值(相關(guān)度高),所以信號包含較多的這兩個頻率成分,在頻譜上這兩個頻率會出現(xiàn)兩個峰。
以上,就是粗淺意義上傅里葉變換的原理。
如前邊所說,小波做的改變就在于,將無限長的三角函數(shù)基換成了有限長的會衰減的小波基。
這就是為什么它叫“小波”,因為是很小的一個波嘛~
從公式可以看出,不同于傅里葉變換,變量只有頻率ω,小波變換有兩個變量:尺度a(scale)和平移量 τ(translation)。尺度a控制小波函數(shù)的伸縮,平移量 τ控制小波函數(shù)的平移。尺度就對應于頻率(反比),平移量 τ就對應于時間。
當伸縮、平移到這么一種重合情況時,也會相乘得到一個大的值。這時候和傅里葉變換不同的是,這不僅可以知道信號有這樣頻率的成分,而且知道它在時域上存在的具體位置。
而當我們在每個尺度下都平移著和信號乘過一遍后,我們就知道信號在每個位置都包含哪些頻率成分。
看到了嗎?有了小波,我們從此再也不害怕非穩(wěn)定信號啦!從此可以做時頻分析啦!
做傅里葉變換只能得到一個頻譜,做小波變換卻可以得到一個時頻譜!
↑:時域信號
↑:傅里葉變換結(jié)果
↑:小波變換結(jié)果
小波還有一些好處:
1. 我們知道對于突變信號,傅里葉變換存在吉布斯效應,我們用無限長的三角函數(shù)怎么也擬合不好突變信號:
然而衰減的小波就不一樣了:
2. 小波可以實現(xiàn)正交化,短時傅里葉變換不能。
評論