本文提出了一個使用傳統(tǒng)DAS和深度強化學習融合的自動駕駛框架。該框架在DAS功能(例如車道變換,巡航控制和車道保持等)下,以最大限度地提高平均速度和最少車道變化為規(guī)則,來確定超車次數(shù)。可行駛空間
2018-06-14 09:41:09
8521 本文來自愛奇藝資深工程師王亞楠在LiveVideoStackCon2018熱身分享,由LiveVideoStack整理而成。在分享中,王亞楠介紹了自動碼率調節(jié)算法的實現(xiàn)過程與評價標準,以及基于強化學習的自動碼率調節(jié)算法的技術架構與實現(xiàn)要點。
2018-08-02 17:51:41
6146 
使用Isaac Gym來強化學習mycobot抓取任務
2023-04-11 14:57:12
5344 
什么是深度強化學習? 眾所周知,人類擅長解決各種挑戰(zhàn)性的問題,從低級的運動控制(如:步行、跑步、打網(wǎng)球)到高級的認知任務。
2023-07-01 10:29:50
1002 
Facebook近日推出ReAgent強化學習(reinforcement learning)工具包,首次通過收集離線反饋(offline feedback)來實現(xiàn)策略評估(policy evaluation)。
2019-10-19 09:38:41
1347 強化學習的另一種策略(二)
2019-04-03 12:10:44
基于SCADE Vision的主動學習框架Ansys SCADE Vision-感知算法魯棒性分析測試工具
2021-02-05 06:31:06
`轉一篇好資料機器學習算法可以分為三大類:監(jiān)督學習、無監(jiān)督學習和強化學習。監(jiān)督學習可用于一個特定的數(shù)據(jù)集(訓練集)具有某一屬性(標簽),但是其他數(shù)據(jù)沒有標簽或者需要預測標簽的情況。無監(jiān)督學習可用
2017-04-18 18:28:36
內容2:課程一: Tensorflow入門到熟練:課程二:圖像分類:課程三:物體檢測:課程四:人臉識別:課程五:算法實現(xiàn):1、卷積神經(jīng)網(wǎng)絡CNN2、循環(huán)神經(jīng)網(wǎng)絡RNN3、強化學習DRL4、對抗性生成
2021-01-09 17:01:54
時間安排大綱具體內容實操案例三天關鍵點1.強化學習的發(fā)展歷程2.馬爾可夫決策過程3.動態(tài)規(guī)劃4.無模型預測學習5.無模型控制學習6.價值函數(shù)逼近7.策略梯度方法8.深度強化學習-DQN算法系列9.
2022-04-21 14:57:39
內容2:課程一: TensoRFlow入門到熟練:課程二:圖像分類:課程三:物體檢測:課程四:人臉識別:課程五:算法實現(xiàn):1、卷積神經(jīng)網(wǎng)絡CNN2、循環(huán)神經(jīng)網(wǎng)絡RNN3、強化學習DRL4、對抗性生成
2021-01-10 13:42:26
learning),又稱再勵學習、評價學習,學習不是單一方法,而是一種機器學習方式,在智能控制機器人及分析預測等領域有許多應用。 強化學習例子:馬爾可夫決策過程 通用機器學習算法列表 1. 線性回歸
2018-10-23 14:31:12
、視頻分析、3D圖形與視覺、SLAM、強化學習、自然語言理解、機器人技術、模型壓縮相關算法等;2. 提出和實現(xiàn)最前沿的算法,保持算法在工業(yè)界和學術界的領先;3. 推動計算機視覺&機器學習算法在眾多
2017-12-07 14:34:41
針對強化學習在連續(xù)狀態(tài)連續(xù)動作空間中的維度災難問題,利用BP神經(jīng)網(wǎng)絡算法作為值函數(shù)逼近策略,設計了自動駕駛儀。并引入動作池機制,有效避免飛行仿真中危險動作的發(fā)生。首先
2013-06-25 16:27:22
27 強化學習在RoboCup帶球任務中的應用_劉飛
2017-03-14 08:00:00
0 界聲譽卓著。在此前接受CSDN采訪時,楊強介紹了他目前的主要工作致力于一個將深度學習、強化學習和遷移學習有機結合的Reinforcement Transfer Learning(RTL)體系的研究。那么,這個技術框架對工業(yè)界的實際應用有什么用的實際意義?在本文中,CSDN結合楊強的另外一個身份國內人工智能創(chuàng)業(yè)
2017-10-09 18:23:18
0 與監(jiān)督機器學習不同,在強化學習中,研究人員通過讓一個代理與環(huán)境交互來訓練模型。當代理的行為產(chǎn)生期望的結果時,它得到正反饋。例如,代理人獲得一個點數(shù)或贏得一場比賽的獎勵。簡單地說,研究人員加強了代理人的良好行為。
2018-07-13 09:33:00
24320 
深度強化學習DRL自提出以來, 已在理論和應用方面均取得了顯著的成果。尤其是谷歌DeepMind團隊基于深度強化學習DRL研發(fā)的AlphaGo,將深度強化學習DRL成推上新的熱點和高度,成為人工智能歷史上一個新的里程碑。因此,深度強化學習DRL非常值得研究。
2018-06-29 18:36:00
27596 薩頓在專訪中(再次)科普了強化學習、深度強化學習,并談到了這項技術的潛力,以及接下來的發(fā)展方向:預測學習
2017-12-27 09:07:15
10857 針對路徑規(guī)劃算法收斂速度慢及效率低的問題,提出了一種基于分層強化學習及人工勢場的多Agent路徑規(guī)劃算法。首先,將多Agent的運行環(huán)境虛擬為一個人工勢能場,根據(jù)先驗知識確定每點的勢能值,它代表最優(yōu)
2017-12-27 14:32:02
0 本文提出了一種LCS和LS-SVM相結合的多機器人強化學習方法,LS-SVM獲得的最優(yōu)學習策略作為LCS的初始規(guī)則集。LCS通過與環(huán)境的交互,能更快發(fā)現(xiàn)指導多機器人強化學習的規(guī)則,為強化學習系統(tǒng)
2018-01-09 14:43:49
0 在風儲配置給定前提下,研究風電與儲能系統(tǒng)如何有機合作的問題。核心在于風電與儲能組成混合系統(tǒng)參與電力交易,通過合作提升其市場競爭的能力。針對現(xiàn)有研究的不足,在具有過程化樣本的前提下,引入強化學習算法
2018-01-27 10:20:50
2 在本篇論文中,研究人員使用流行的異步進化算法(asynchronous evolutionary algorithm)的正則化版本,并將其與非正則化的形式以及強化學習方法進行比較。
2018-02-09 14:47:41
3454 
傳統(tǒng)上,強化學習在人工智能領域占據(jù)著一個合適的地位。但強化學習在過去幾年已開始在很多人工智能計劃中發(fā)揮更大的作用。
2018-03-03 14:16:56
3924 的基礎上增加BCS退避策略以解決流量較大場合業(yè)務區(qū)分問題;針對協(xié)調器節(jié)點,提出了基于強化學習的占空比調整策略,該策略能根據(jù)不同應用需求和環(huán)境變化自適應調整占空比。仿真結果表明,提出算法能針對不同環(huán)境滿足高優(yōu)先級業(yè)務性能需求,并能根據(jù)流量變化進行占空比調整,具有極
2018-03-09 16:02:07
0 讓我們在強化學習社區(qū)感興趣的問題上應用隨機搜索。深度強化學習領域一直把大量時間和精力用于由OpenAI維護的、基于MuJoCo模擬器的一套基準測試中。這里,最優(yōu)控制問題指的是讓一個有腿機器人
2018-04-01 09:35:00
4193 
Q-learning和SARSA是兩種最常見的不理解環(huán)境強化學習算法,這兩者的探索原理不同,但是開發(fā)原理是相似的。Q-learning是一種離線學習算法,智能體需要從另一項方案中學習到行為a*的價值
2018-04-15 10:32:22
12973 強化學習是智能系統(tǒng)從環(huán)境到行為映射的學習,以使獎勵信號(強化信號)函數(shù)值最大,強化學習不同于連接主義學習中的監(jiān)督學習,主要表現(xiàn)在教師信號上,強化學習中由環(huán)境提供的強化信號是對產(chǎn)生動作的好壞作一種評價
2018-05-30 06:53:00
1234 當我們使用虛擬的計算機屏幕和隨機選擇的圖像來模擬一個非常相似的測試時,我們發(fā)現(xiàn),我們的“元強化學習智能體”(meta-RL agent)似乎是以類似于Harlow實驗中的動物的方式在學習,甚至在被顯示以前從未見過的全新圖像時也是如此。
2018-05-16 09:03:39
4475 
McAleer和他的團隊稱這個過程為“一種新型的強化學習算法,能夠教導算法如何在沒有人類協(xié)助的情況下解開魔方?!?他們聲稱,這種學習算法可以在30步內解開100%的隨機打亂魔方 - 這和人類的表現(xiàn)不相上下或優(yōu)于人類的表現(xiàn)。
2018-06-22 16:49:39
3600 
Q Learning算法是由Watkins于1989年在其博士論文中提出,是強化學習發(fā)展的里程碑,也是目前應用最為廣泛的強化學習算法。
2018-07-05 14:10:00
3368 自動駕駛汽車首先是人工智能問題,而強化學習是機器學習的一個重要分支,是多學科多領域交叉的一個產(chǎn)物。今天人工智能頭條給大家介紹強化學習在自動駕駛的一個應用案例,無需3D地圖也無需規(guī)則,讓汽車從零開始在二十分鐘內學會自動駕駛。
2018-07-10 09:00:29
4676 
前段時間,OpenAI的游戲機器人在Dota2的比賽中贏了人類的5人小組,取得了團隊勝利,是強化學習攻克的又一游戲里程碑。
2018-07-13 08:56:01
4439 
強化學習是人工智能基本的子領域之一,在強化學習的框架中,智能體通過與環(huán)境互動,來學習采取何種動作能使其在給定環(huán)境中的長期獎勵最大化,就像在上述的棋盤游戲寓言中,你通過與棋盤的互動來學習。
2018-07-15 10:56:37
17106 
這些具有一定難度的任務 OpenAI 自己也在研究,他們認為這是深度強化學習發(fā)展到新時代之后可以作為新標桿的算法測試任務,而且也歡迎其它機構與學校的研究人員一同研究這些任務,把深度強化學習的表現(xiàn)推上新的臺階。
2018-08-03 14:27:26
4305 結合 DL 與 RL 的深度強化學習(Deep Reinforcement Learning, DRL)迅速成為人工智能界的焦點。
2018-08-09 10:12:43
5789 強化學習作為一種常用的訓練智能體的方法,能夠完成很多復雜的任務。在強化學習中,智能體的策略是通過將獎勵函數(shù)最大化訓練的。獎勵在智能體之外,各個環(huán)境中的獎勵各不相同。深度學習的成功大多是有密集并且有效的獎勵函數(shù),例如電子游戲中不斷增加的“分數(shù)”。
2018-08-18 11:38:57
3363 而這時,強化學習會在沒有任何標簽的情況下,通過先嘗試做出一些行為得到一個結果,通過這個結果是對還是錯的反饋,調整之前的行為,就這樣不斷的調整,算法能夠學習到在什么樣的情況下選擇什么樣的行為可以得到最好的結果。
2018-08-21 09:18:25
19123 
強化學習(RL)研究在過去幾年取得了許多重大進展。強化學習的進步使得 AI 智能體能夠在一些游戲上超過人類,值得關注的例子包括 DeepMind 攻破 Atari 游戲的 DQN,在圍棋中獲得矚目的 AlphaGo 和 AlphaGo Zero,以及在 Dota2 對戰(zhàn)人類職業(yè)玩家的Open AI Five。
2018-08-31 09:20:49
3498 對于新的研究人員來說,能夠根據(jù)既定方法快速對其想法進行基準測試非常重要。因此,我們?yōu)?Arcade 學習環(huán)境支持的 60 個游戲提供四個智能體的完整培訓數(shù)據(jù),可用作 Python pickle 文件
2018-08-31 10:55:30
4646 強化學習是一種非常重要 AI 技術,它能使用獎勵(或懲罰)來驅動智能體(agents)朝著特定目標前進,比如它訓練的 AI 系統(tǒng) AlphaGo 擊敗了頂尖圍棋選手,它也是 DeepMind 的深度
2018-09-03 14:06:30
2653 強化學習是一種訓練主體最大化獎勵的學習機制,對于目標條件下的強化學習來說可以將獎勵函數(shù)設為當前狀態(tài)與目標狀態(tài)之間距離的反比函數(shù),那么最大化獎勵就對應著最小化與目標函數(shù)的距離。
2018-09-24 10:11:00
6779 按照以往的做法,如果研究人員要用強化學習算法對獎勵進行剪枝,以此克服獎勵范圍各不相同的問題,他們首先會把大的獎勵設為+1,小的獎勵為-1,然后對預期獎勵做歸一化處理。雖然這種做法易于學習,但它也改變了智能體的目標。
2018-09-16 09:32:03
5336 Silver的演講中提出的強化學習10大要點涵蓋涉及算法評估、狀態(tài)控制、建模函數(shù)等方面的心得和建議,非常值得開發(fā)者和機器學習愛好者參考學習。一起看看他是怎么說的吧!
2018-09-17 08:41:19
3067 之前接觸的強化學習算法都是單個智能體的強化學習算法,但是也有很多重要的應用場景牽涉到多個智能體之間的交互。
2018-11-02 16:18:15
21016 11月1日,F(xiàn)acebook開源了Horizon,一個由Facebook的AI研究人員、推薦系統(tǒng)專家和工程師共同搭建的強化學習平臺,其框架的構建工作開始于兩年半前,在過去一年中一直被Facebook內部使用。
2018-11-05 09:34:17
722 本文作者通過簡單的方式構建了強化學習模型來訓練無人車算法,可以為初學者提供快速入門的經(jīng)驗。
2018-11-12 14:47:39
4570 OpenAI 近期發(fā)布了一個新的訓練環(huán)境 CoinRun,它提供了一個度量智能體將其學習經(jīng)驗活學活用到新情況的能力指標,而且還可以解決一項長期存在于強化學習中的疑難問題——即使是廣受贊譽的強化算法在訓練過程中也總是沒有運用監(jiān)督學習的技術。
2019-01-01 09:22:00
2122 
強化學習(RL)能通過獎勵或懲罰使智能體實現(xiàn)目標,并將它們學習到的經(jīng)驗轉移到新環(huán)境中。
2018-12-24 09:29:56
2949 在一些情況下,我們會用策略函數(shù)(policy, 總得分,也就是搭建的網(wǎng)絡在測試集上的精度(accuracy),通過強化學習(Reinforcement Learning)這種通用黑盒算法來優(yōu)化。然而,因為強化學習本身具有數(shù)據(jù)利用率低的特點,這個優(yōu)化的過程往往需要大量的計算資源。
2019-01-28 09:54:22
4705 Google AI 與 DeepMind 合作推出深度規(guī)劃網(wǎng)絡 (PlaNet),這是一個純粹基于模型的智能體,能從圖像輸入中學習世界模型,完成多項規(guī)劃任務,數(shù)據(jù)效率平均提升50倍,強化學習又一突破。
2019-02-17 09:30:28
3036 
在傳統(tǒng)的多智體學習過程當中,有研究者在對其他智能體建模 (也即“對手建?!? opponent modeling) 時使用了遞歸推理,但由于算法復雜和計算力所限,目前還尚未有人在多智體深度強化學習 (Multi-Agent Deep Reinforcement Learning) 的對手建模中使用遞歸推理。
2019-03-05 08:52:43
4556 逆強化學習 (IRL) 方法從數(shù)據(jù)中學習一個獎勵函數(shù),然后根據(jù)這個獎勵函數(shù)訓練一個策略。IRL 放松了數(shù)據(jù)的 i.i.d. 假設,但仍然假設環(huán)境是靜態(tài)的。當環(huán)境 (即淘寶平臺) 發(fā)生變化時,學習策略可能會失敗。上述問題使得這些方法在構建虛擬淘寶時不太實用。
2019-03-05 09:06:52
3726 
近日,Reddit一位網(wǎng)友根據(jù)近期OpenAI Five、AlphaStar的表現(xiàn),提出“深度強化學習是否已經(jīng)到達盡頭”的問題。
2019-05-10 16:34:59
2313 在谷歌最新的論文中,研究人員提出了“非政策強化學習”算法OPC,它是強化學習的一種變體,它能夠評估哪種機器學習模型將產(chǎn)生最好的結果。數(shù)據(jù)顯示,OPC比基線機器學習算法有著顯著的提高,更加穩(wěn)健可靠。
2019-06-22 11:17:08
3374 近幾年來,強化學習在任務導向型對話系統(tǒng)中得到了廣泛的應用,對話系統(tǒng)通常被統(tǒng)計建模成為一個 馬爾科夫決策過程(Markov Decision Process)模型,通過隨機優(yōu)化的方法來學習對話策略。
2019-08-06 14:16:29
1836 強化學習非常適合實現(xiàn)自主決策,相比之下監(jiān)督學習與無監(jiān)督學習技術則無法獨立完成此項工作。
2019-12-10 14:34:57
1092 本文檔的主要內容詳細介紹的是深度強化學習的筆記資料免費下載。
2020-03-10 08:00:00
0 強化學習(RL)是現(xiàn)代人工智能領域中最熱門的研究主題之一,其普及度還在不斷增長。 讓我們看一下開始學習RL需要了解的5件事。
2020-05-04 18:14:00
3117 
加州大學伯克利分校的一組研究人員本周開放了使用增強數(shù)據(jù)進行強化學習(RAD)的資源。
2020-05-11 23:09:04
1179 深度學習DL是機器學習中一種基于對數(shù)據(jù)進行表征學習的方法。深度學習DL有監(jiān)督和非監(jiān)督之分,都已經(jīng)得到廣泛的研究和應用。強化學習RL是通過對未知環(huán)境一邊探索一邊建立環(huán)境模型以及學習得到一個最優(yōu)策略。強化學習是機器學習中一種快速、高效且不可替代的學習算法。
2020-05-16 09:20:40
3150 深度學習DL是機器學習中一種基于對數(shù)據(jù)進行表征學習的方法。深度學習DL有監(jiān)督和非監(jiān)督之分,都已經(jīng)得到廣泛的研究和應用。強化學習RL是通過對未知環(huán)境一邊探索一邊建立環(huán)境模型以及學習得到一個最優(yōu)策略。強化學習是機器學習中一種快速、高效且不可替代的學習算法。
2020-06-13 11:39:40
5528 近期,有不少報道強化學習算法在 GO、Dota 2 和 Starcraft 2 等一系列游戲中打敗了專業(yè)玩家的新聞。強化學習是一種機器學習類型,能夠在電子游戲、機器人、自動駕駛等復雜應用中運用人工智能。
2020-07-27 08:50:15
715 Viet Nguyen就是其中一個。這位來自德國的程序員表示自己只玩到了第9個關卡。因此,他決定利用強化學習AI算法來幫他完成未通關的遺憾。
2020-07-29 09:30:16
2429 強化學習屬于機器學習中的一個子集,它使代理能夠理解在特定環(huán)境中執(zhí)行特定操作的相應結果。目前,相當一部分機器人就在使用強化學習掌握種種新能力。
2020-11-06 15:33:49
1552 深度強化學習是深度學習與強化學習相結合的產(chǎn)物,它集成了深度學習在視覺等感知問題上強大的理解能力,以及強化學習的決策能力,實現(xiàn)了...
2020-12-10 18:32:50
374 RLax(發(fā)音為“ relax”)是建立在JAX之上的庫,它公開了用于實施強化學習智能體的有用構建塊。。報道:深度強化學習實驗室作者:DeepRL ...
2020-12-10 18:43:23
499 本文主要介紹深度強化學習在任務型對話上的應用,兩者的結合點主要是將深度強化學習應用于任務型對話的策略學習上來源:騰訊技術工程微信號
2020-12-10 19:02:45
781 Ⅰ為基準算法,其僅利用城市間的距離等靜態(tài)結構信息來構造初始解,解構造方法2~解構造方法4則嘗試利用搜索過程中積累的歷史數(shù)據(jù),通過強化學習挖掘有用信息,用于引導解的構造過程。在25個國際公開算例上的測試結果表明,基于歷史信息的
2021-03-17 11:42:37
16 強化學習( Reinforcement learning,RL)作為機器學習領域中與監(jiān)督學習、無監(jiān)督學習并列的第三種學習范式,通過與環(huán)境進行交互來學習,最終將累積收益最大化。常用的強化學習算法分為
2021-04-08 11:41:58
11 深度強化學習(DRL)作為機器學習的重要分攴,在 Alphago擊敗人類后受到了廣泛關注。DRL以種試錯機制與環(huán)境進行交互,并通過最大化累積獎賞最終得到最優(yōu)策略。強化學習可分為無模型強化學習和模型
2021-04-12 11:01:52
9 當機器人遇見強化學習,會碰出怎樣的火花? 一名叫 Cassie 的機器人,給出了生動演繹。 最近,24 歲的中國南昌小伙李鐘毓和其所在團隊,用強化學習教 Cassie 走路 ,目前它已學會蹲伏走路
2021-04-13 09:35:09
2164 
強化學習是人工智能領域中的一個研究熱點。在求解強化學習問題時,傳統(tǒng)的最小二乘法作為一類特殊的函數(shù)逼近學習方法,具有收斂速度快、充分利用樣本數(shù)據(jù)的優(yōu)勢。通過對最小二乘時序差分算法
2021-04-23 15:03:03
5 利用深度強化學習技術實現(xiàn)路口信號控制是智能交通領域的硏究熱點?,F(xiàn)有硏究大多利用強化學習來全面刻畫交通狀態(tài)以及設計有效強化學習算法以解決信號配時問題,但這些研究往往忽略了信號燈狀態(tài)對動作選擇的影響以及
2021-04-23 15:30:53
21 在移動霧計算中,霧節(jié)點與移動終端用戶之間的通信容易受到偽裝攻擊,從而帶來通信和數(shù)據(jù)傳輸?shù)陌踩珕栴}?;谝苿屿F環(huán)境下的物理層密鑰生成策略,提出一種基于強化學習的偽裝攻擊檢測算法。構建移動霧計算中的偽裝
2021-05-11 11:48:39
5 樹庫符號構建標注詞典,通過依存句法分析融合語義特征,并以長短期記憶網(wǎng)絡為策略網(wǎng)絡,利用循環(huán)記憶完善部分觀測信息。在此基礎上,引入強化學習框架,將目標詞性作為環(huán)境反饋,通過特征學習不斷逼近目標真實值。實驗結果表明
2021-05-14 11:29:35
14 壓邊力控制策略的學習優(yōu)化?;谏疃?b class="flag-6" style="color: red">強化學習的壓邊力優(yōu)化算法,利用深度神經(jīng)網(wǎng)絡處理巨大的狀態(tài)空間,避免了系統(tǒng)動力學的擬合,并且使用一種新的網(wǎng)絡結構來構建策略網(wǎng)絡,將壓邊力策略劃分為全局與局部兩部分,提高了壓邊
2021-05-27 10:32:39
0 一種新型的多智能體深度強化學習算法
2021-06-23 10:42:47
36 基于深度強化學習的無人機控制律設計方法
2021-06-23 14:59:10
46 基于強化學習的虛擬場景角色乒乓球訓練
2021-06-27 11:34:33
62 使用Matlab進行強化學習電子版資源下載
2021-07-16 11:17:09
0 多Agent 深度強化學習綜述 來源:《自動化學報》,作者梁星星等 摘 要?近年來,深度強化學習(Deep reinforcement learning,DRL) 在諸多復雜序貫決策問題中取得巨大
2022-01-18 10:08:01
1226 
本文主要內容是如何用Oenflow去復現(xiàn)強化學習玩 Flappy Bird 小游戲這篇論文的算法關鍵部分,還有記錄復現(xiàn)過程中一些踩過的坑。
2022-01-26 18:19:34
2 GTC2022大會黃仁勛:NVIDIA NVCell強化學習模型正在執(zhí)行芯片布局,具備語言監(jiān)督的多模態(tài)學習為計算機視覺開拓了新維度。
2022-03-23 15:23:55
1720 
來源:DeepHub IMBA 強化學習的基礎知識和概念簡介(無模型、在線學習、離線強化學習等) 機器學習(ML)分為三個分支:監(jiān)督學習、無監(jiān)督學習和強化學習。 監(jiān)督學習(SL) : 關注在給
2022-12-20 14:00:02
828 電子發(fā)燒友網(wǎng)站提供《ESP32上的深度強化學習.zip》資料免費下載
2022-12-27 10:31:45
0 作者:Siddhartha Pramanik 來源:DeepHub IMBA 目前流行的強化學習算法包括 Q-learning、SARSA、DDPG、A2C、PPO、DQN 和 TRPO。這些算法
2023-02-03 20:15:06
747 本文介紹了強化學習與智能駕駛決策規(guī)劃。智能駕駛中的決策規(guī)劃模塊負責將感知模塊所得到的環(huán)境信息轉化成具體的駕駛策略,從而指引車輛安全、穩(wěn)定的行駛。真實的駕駛場景往往具有高度的復雜性及不確定性。如何制定
2023-02-08 14:05:16
1441 強化學習(RL)是人工智能的一個子領域,專注于決策過程。與其他形式的機器學習相比,強化學習模型通過與環(huán)境交互并以獎勵或懲罰的形式接收反饋來學習。
2023-06-09 09:23:23
355 大模型時代,模型壓縮和加速顯得尤為重要。傳統(tǒng)監(jiān)督學習可通過稀疏神經(jīng)網(wǎng)絡實現(xiàn)模型壓縮和加速,那么同樣需要大量計算開銷的強化學習任務可以基于稀疏網(wǎng)絡進行訓練嗎?本文提出了一種強化學習專用稀疏訓練框架
2023-06-11 21:40:02
356 
前言 DeepMind 最近在 Nature 發(fā)表了一篇論文 AlphaDev[2, 3],一個利用強化學習來探索更優(yōu)排序算法的AI系統(tǒng)。 AlphaDev 系統(tǒng)直接從 CPU 匯編指令的層面入手
2023-06-19 10:49:27
357 
來源:DeepHubIMBA強化學習的基礎知識和概念簡介(無模型、在線學習、離線強化學習等)機器學習(ML)分為三個分支:監(jiān)督學習、無監(jiān)督學習和強化學習。監(jiān)督學習(SL):關注在給定標記訓練數(shù)據(jù)
2023-01-05 14:54:05
419 
作者:SiddharthaPramanik來源:DeepHubIMBA目前流行的強化學習算法包括Q-learning、SARSA、DDPG、A2C、PPO、DQN和TRPO。這些算法已被用于在游戲
2023-02-06 15:06:38
665 
電子發(fā)燒友網(wǎng)站提供《人工智能強化學習開源分享.zip》資料免費下載
2023-06-20 09:27:28
1 摘要:基于強化學習的目標檢測算法在檢測過程中通常采用預定義搜索行為,其產(chǎn)生的候選區(qū)域形狀和尺寸變化單一,導致目標檢測精確度較低。為此,在基于深度強化學習的視覺目標檢測算法基礎上,提出聯(lián)合回歸與深度
2023-07-19 14:35:02
0 深度學習算法庫框架學習 深度學習是一種非常強大的機器學習方法,它可以用于許多不同的應用程序,例如計算機視覺、語言處理和自然語言處理。然而,實現(xiàn)深度學習技術需要使用一些算法庫框架。在本文中,我們將探討
2023-08-17 16:11:07
412 深度學習框架和深度學習算法教程 深度學習是機器學習領域中的一個重要分支,多年來深度學習一直在各個領域的應用中發(fā)揮著極其重要的作用,成為了人工智能技術的重要組成部分。許多深度學習算法和框架提供
2023-08-17 16:11:26
638 訊維模擬矩陣在深度強化學習智能控制系統(tǒng)中的應用主要是通過構建一個包含多種環(huán)境信息和動作空間的模擬矩陣,來模擬和預測深度強化學習智能控制系統(tǒng)在不同環(huán)境下的表現(xiàn)和效果,從而優(yōu)化控制策略和提高系統(tǒng)的性能
2023-09-04 14:26:36
296 
擴散模型(diffusion model)在 CV 領域甚至 NLP 領域都已經(jīng)有了令人印象深刻的表現(xiàn)。最近的一些工作開始將 diffusion model 用于強化學習(RL)中來解決序列決策問題
2023-10-02 10:45:02
403 
強化學習是機器學習的方式之一,它與監(jiān)督學習、無監(jiān)督學習并列,是三種機器學習訓練方法之一。 在圍棋上擊敗世界第一李世石的 AlphaGo、在《星際爭霸2》中以 10:1 擊敗了人類頂級職業(yè)玩家
2023-10-30 11:36:40
1051 
評論