一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>BP神經(jīng)網(wǎng)絡(luò)算法 python實(shí)現(xiàn)

BP神經(jīng)網(wǎng)絡(luò)算法 python實(shí)現(xiàn)

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴

評論

查看更多

相關(guān)推薦

BP神經(jīng)網(wǎng)絡(luò)PID控制電機(jī)模型仿真

求一個simulink的蓄電池用BP神經(jīng)網(wǎng)絡(luò)PID控制電機(jī)加速勻速減速運(yùn)動的模型仿真
2020-02-22 02:17:03

BP神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)數(shù)學(xué)知識分享

一文看懂BP神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)數(shù)學(xué)知識
2020-06-16 07:14:35

BP神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)分類——語音特征信號分類有哪些

第1章 BP神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)分類——語音特征信號的分類
2020-04-28 08:05:42

神經(jīng)網(wǎng)絡(luò)算法怎么去控制溫控系統(tǒng),為什么不用PID控制?

神經(jīng)網(wǎng)絡(luò)算法怎么去控制溫控系統(tǒng),為什么不用pid控制
2023-10-27 06:10:14

神經(jīng)網(wǎng)絡(luò)和反向傳播算法

03_深度學(xué)習(xí)入門_神經(jīng)網(wǎng)絡(luò)和反向傳播算法
2019-09-12 07:08:05

神經(jīng)網(wǎng)絡(luò)教程(李亞非)

網(wǎng)絡(luò)BP算法的程序設(shè)計(jì)  多層前向網(wǎng)絡(luò)BP算法源程序  第4章 Hopfield網(wǎng)絡(luò)模型  4.1 離散型Hopfield神經(jīng)網(wǎng)絡(luò)  4.2 連續(xù)型Hopfield神經(jīng)網(wǎng)絡(luò)  Hopfield網(wǎng)絡(luò)模型
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡(luò)移植到STM32的方法

問題,一個是神經(jīng)網(wǎng)絡(luò)的移植,另一個是STM32的計(jì)算速度。神經(jīng)網(wǎng)絡(luò)的移植網(wǎng)絡(luò)采用的是最簡單的BP神經(jīng)網(wǎng)絡(luò),基本原理可以自己去了解一下,大概就是通過若干次矩陣運(yùn)算AX+BAX+BAX+B將m個輸入對應(yīng)到n
2022-01-11 06:20:53

神經(jīng)網(wǎng)絡(luò)資料

基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05

MATLAB神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)

MATLAB神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)說明:本文檔中所列出的函數(shù)適用于MATLAB5.3以上版本,為了簡明起見,只列出了函數(shù)名,若需要進(jìn)一步的說明,請參閱MATLAB的幫助文檔。1. 網(wǎng)絡(luò)創(chuàng)建函數(shù)newp
2009-09-22 16:10:08

labview BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)

請問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對于”BP神經(jīng)網(wǎng)絡(luò)分類“這個范例有很多不懂的地方,比如
2017-02-22 16:08:08

labview的bp算法那怎么實(shí)現(xiàn)啊?各位大神求解

正在做畢設(shè),老師又給打回來了,課題是基于labview的bp神經(jīng)網(wǎng)絡(luò)算法實(shí)現(xiàn),求助大神給點(diǎn)指導(dǎo),謝啦
2012-05-14 15:44:50

matlab實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò) 精選資料分享

習(xí)神經(jīng)神經(jīng)網(wǎng)絡(luò),對于神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)是如何一直沒有具體實(shí)現(xiàn)一下:現(xiàn)看到一個簡單的神經(jīng)網(wǎng)絡(luò)模型用于訓(xùn)練的輸入數(shù)據(jù):對應(yīng)的輸出數(shù)據(jù):我們這里設(shè)置:1:節(jié)點(diǎn)個數(shù)設(shè)置:輸入層、隱層、輸出層的節(jié)點(diǎn)
2021-08-18 07:25:21

【PYNQ-Z2試用體驗(yàn)】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識

python語言,可以很輕松地實(shí)現(xiàn)復(fù)雜的數(shù)學(xué)運(yùn)算,降低編程難度。下一篇文章,將通過具體代碼,演示基于神經(jīng)網(wǎng)絡(luò)的手寫圖形識別。
2019-03-03 22:10:19

【案例分享】基于BP算法的前饋神經(jīng)網(wǎng)絡(luò)

傳播的,不會回流),區(qū)別于循環(huán)神經(jīng)網(wǎng)絡(luò)RNN。BP算法(Back Propagation):誤差反向傳播算法,用于更新網(wǎng)絡(luò)中的權(quán)重。BP神經(jīng)網(wǎng)絡(luò)思想:表面上:1. 數(shù)據(jù)信息的前向傳播,從輸入層到隱含層
2019-07-21 04:00:00

不可錯過!人工神經(jīng)網(wǎng)絡(luò)算法、PID算法、Python人工智能學(xué)習(xí)等資料包分享(附源代碼)

為了方便大家查找技術(shù)資料,電子發(fā)燒友小編為大家整理一些精華資料,讓大家可以參考學(xué)習(xí),希望對廣大電子愛好者有所幫助。 1.人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實(shí)例(pdf彩版) 人工神經(jīng) 網(wǎng)絡(luò)
2023-09-13 16:41:18

人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

關(guān)于BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型的確定??!

請問用matlab編程進(jìn)行BP神經(jīng)網(wǎng)絡(luò)預(yù)測時(shí),訓(xùn)練結(jié)果很多都是合適的,但如何確定最合適的?且如何用最合適的BP模型進(jìn)行外推預(yù)測?
2014-02-08 14:23:06

關(guān)于開關(guān)磁阻電機(jī)的matlab BP神經(jīng)網(wǎng)絡(luò)數(shù)學(xué)建模方面的資料

求大神們 給點(diǎn)關(guān)于開關(guān)磁阻電機(jī)的matlab BP神經(jīng)網(wǎng)絡(luò)數(shù)學(xué)建模方面的資料
2014-11-17 11:16:43

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

propagation algorithm,BP)[22]。BP 算法采用 Sigmoid 進(jìn)行非線性映射,有效解決了 非線性分類和學(xué)習(xí)的問題,掀起了神經(jīng)網(wǎng)絡(luò)第二次 研究高潮。BP 網(wǎng)絡(luò)是迄今為止最常用的神經(jīng)網(wǎng)絡(luò), 目前
2022-08-02 10:39:39

反饋神經(jīng)網(wǎng)絡(luò)算法是什么

反饋神經(jīng)網(wǎng)絡(luò)算法
2020-04-28 08:36:58

基于BP神經(jīng)網(wǎng)絡(luò)控制+Simulink雙閉環(huán)直流調(diào)速系統(tǒng)仿真設(shè)計(jì)

最近一個月的時(shí)間沒有更博,跟隨老師出差談項(xiàng)目了。前段時(shí)間學(xué)習(xí)了電機(jī)的智能控制,這次把設(shè)計(jì)好的基于BP神經(jīng)網(wǎng)絡(luò)PID控制器應(yīng)用于雙閉環(huán)直流調(diào)速系統(tǒng)。雙閉環(huán)直流調(diào)速系統(tǒng)的動態(tài)數(shù)學(xué)模型如下圖所示: 外環(huán)為
2021-06-28 12:03:44

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達(dá)能力,可以通過對系統(tǒng)性能的學(xué)習(xí)來實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47

基于BP神經(jīng)網(wǎng)絡(luò)的手勢識別系統(tǒng)

  摘 要:本文給出了采用ADXL335加速度傳感器來采集五個手指和手背的加速度三軸信息,并通過ZigBee無線網(wǎng)絡(luò)傳輸來提取手勢特征量,同時(shí)利用BP神經(jīng)網(wǎng)絡(luò)算法進(jìn)行誤差分析來實(shí)現(xiàn)手勢識別的設(shè)計(jì)方法
2018-11-13 16:04:45

基于BP神經(jīng)網(wǎng)絡(luò)的辨識

基于BP神經(jīng)網(wǎng)絡(luò)的辨識
2018-01-04 13:37:27

基于神經(jīng)網(wǎng)絡(luò)控制算法的伺服運(yùn)動控制卡該如何去設(shè)計(jì)?

本文設(shè)計(jì)了一種基于神經(jīng)網(wǎng)絡(luò)控制算法的伺服運(yùn)動控制卡。
2021-06-03 06:05:09

基于神經(jīng)網(wǎng)絡(luò)混沌吸引子公鑰加密算法的FPGA實(shí)現(xiàn)

【作者】:劉晉明;劉年生;【來源】:《廈門大學(xué)學(xué)報(bào)(自然科學(xué)版)》2010年02期【摘要】:利用具有順序和并行執(zhí)行的特點(diǎn)的VHDL語言,設(shè)計(jì)并實(shí)現(xiàn)了基于神經(jīng)網(wǎng)絡(luò)混沌吸引子的公鑰加密算法,在編
2010-04-24 09:15:41

基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評估及局限性

FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評估及局限性
2021-04-30 06:58:13

基于labview的BP人工神經(jīng)網(wǎng)絡(luò)曲線擬合小程序

`點(diǎn)擊學(xué)習(xí)>>《龍哥手把手教你學(xué)LabVIEW視覺設(shè)計(jì)》視頻教程用LabVIEW實(shí)現(xiàn)BP人工神經(jīng)網(wǎng)絡(luò)曲線擬合,感謝LabVIEW的矩陣運(yùn)算函數(shù),程序流程較之文本型語言清晰很多。[hide] [/hide]`
2011-12-13 16:41:43

基于三層前饋BP神經(jīng)網(wǎng)絡(luò)的圖像壓縮算法解析

本文介紹了基于三層前饋BP神經(jīng)網(wǎng)絡(luò)的圖像壓縮算法,提出了基于FPGA的實(shí)現(xiàn)驗(yàn)證方案,詳細(xì)討論了實(shí)現(xiàn)該壓縮網(wǎng)絡(luò)組成的重要模塊MAC電路的流水線設(shè)計(jì)。
2021-05-06 07:01:59

如何設(shè)計(jì)BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

,并能在腦海中重現(xiàn)這些圖像信息,這不僅與人腦的海量信息存儲能力有關(guān),還與人腦的信息處理能力,包括數(shù)據(jù)壓縮能力有關(guān)。在各種神經(jīng)網(wǎng)絡(luò)中,多層前饋神經(jīng)網(wǎng)絡(luò)具有很強(qiáng)的信息處理能力,由于其采用BP算法,因此也
2019-08-08 06:11:30

有人做過神經(jīng)網(wǎng)絡(luò)在FPGA上的實(shí)現(xiàn)嗎?

例如BP神經(jīng)網(wǎng)絡(luò)
2018-03-07 19:44:24

BP神經(jīng)網(wǎng)絡(luò)PID控制電機(jī)加速勻速減速運(yùn)動的simulink的仿真模型

求一個simulink的蓄電池用BP神經(jīng)網(wǎng)絡(luò)PID控制電機(jī)加速勻速減速運(yùn)動的模型仿真
2020-02-22 02:15:50

求一個基于BP神經(jīng)網(wǎng)絡(luò)PID控制器應(yīng)用于雙閉環(huán)直流調(diào)速系統(tǒng)

求一個基于BP神經(jīng)網(wǎng)絡(luò)PID控制器應(yīng)用于雙閉環(huán)直流調(diào)速系統(tǒng)BP_PID控制器學(xué)習(xí)參數(shù)怎么設(shè)置?
2021-10-13 08:10:12

求利用LABVIEW 實(shí)現(xiàn)bp神經(jīng)網(wǎng)絡(luò)的程序

誰有利用LABVIEW 實(shí)現(xiàn)bp神經(jīng)網(wǎng)絡(luò)的程序?。ㄎ矣玫陌姹臼?.6的 )
2012-11-26 14:54:59

求基于labview的BP神經(jīng)網(wǎng)絡(luò)算法實(shí)現(xiàn)過程

求高手,基于labview的BP神經(jīng)網(wǎng)絡(luò)算法實(shí)現(xiàn)過程,最好有程序哈,謝謝!!
2012-12-10 14:55:50

用labview框圖編寫的BP神經(jīng)網(wǎng)絡(luò)程序vi

參考文獻(xiàn)用labview編寫的一個3層BP神經(jīng)網(wǎng)絡(luò)程序
2015-05-28 10:35:08

用matlab編程進(jìn)行BP神經(jīng)網(wǎng)絡(luò)預(yù)測時(shí)如何確定最合適的,BP模型

請問用matlab編程進(jìn)行BP神經(jīng)網(wǎng)絡(luò)預(yù)測時(shí),訓(xùn)練結(jié)果很多都是合適的,但如何確定最合適的?且如何用最合適的BP模型進(jìn)行外推預(yù)測?
2014-02-08 14:19:12

粒子群優(yōu)化模糊神經(jīng)網(wǎng)絡(luò)在語音識別中的應(yīng)用

針對模糊神經(jīng)網(wǎng)絡(luò)訓(xùn)練采用BP算法比較依賴于網(wǎng)絡(luò)的初始條件,訓(xùn)練時(shí)間較長,容易陷入局部極值的缺點(diǎn),利用粒子群優(yōu)化算法(PSO)的全局搜索性能,將PSO用于模糊神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程.由于基本PSO算法存在
2010-05-06 09:05:35

遺傳算法 神經(jīng)網(wǎng)絡(luò) 解析

關(guān)于遺傳算法神經(jīng)網(wǎng)絡(luò)
2013-05-19 10:22:16

采用BP神經(jīng)網(wǎng)絡(luò)及其改進(jìn)算法改善傳感器特性

本文采用BP 多層前饋神經(jīng)網(wǎng)絡(luò)及其改進(jìn)算法對傳感器特性進(jìn)行補(bǔ)償. 提出附加動量法、自適應(yīng)參數(shù)變化法為主要內(nèi)容的BP 神經(jīng)網(wǎng)絡(luò)改進(jìn)算法,有效地改善了BP 網(wǎng)絡(luò)傳統(tǒng)算法收斂慢、容
2009-07-02 08:35:1714

基于BP神經(jīng)網(wǎng)絡(luò)的小麥病害診斷知識獲取

為了從神經(jīng)網(wǎng)絡(luò)中獲取易于理解的知識,以小麥病害診斷為例,研究了BP 神經(jīng)網(wǎng)絡(luò)的規(guī)則抽取,提出一種基于結(jié)構(gòu)分析的BP 神經(jīng)網(wǎng)絡(luò)規(guī)則抽取方法。采用帶懲罰項(xiàng)的交錯熵誤差函
2009-07-30 09:18:0913

基于BP神經(jīng)網(wǎng)絡(luò)PID的漂白溫度控制算法的研究

本文討論了使用BP 神經(jīng)網(wǎng)絡(luò)PID 控制算法,并且將這種控制算法應(yīng)用在漂白工段的控制當(dāng)中。利用神經(jīng)網(wǎng)絡(luò)自學(xué)習(xí)能力,在線整定PID 控制參數(shù)。實(shí)踐證明BP 神經(jīng)網(wǎng)絡(luò)PID控制器具有
2009-08-15 10:27:3634

BP神經(jīng)網(wǎng)絡(luò)在狀態(tài)監(jiān)測數(shù)據(jù)趨勢預(yù)測中的應(yīng)用

應(yīng)用神經(jīng)網(wǎng)絡(luò)理論,建立了預(yù)測狀態(tài)監(jiān)測數(shù)據(jù)趨勢的BP 神經(jīng)網(wǎng)絡(luò)模型,并通MATLAB 實(shí)現(xiàn)了仿真編程。實(shí)驗(yàn)中,選取多組數(shù)據(jù)對網(wǎng)絡(luò)進(jìn)行了訓(xùn)練和測試,證實(shí)了算法和模型的有效性。
2009-09-11 15:53:1026

基于遺傳優(yōu)化神經(jīng)網(wǎng)絡(luò)的故障診斷研究

針對BP 神經(jīng)網(wǎng)絡(luò)具有收斂速度慢、易陷入局部極小的缺點(diǎn),利用具有全局搜索能力的遺傳算法來優(yōu)化BP 神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值,并用遺傳優(yōu)化BP 網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷?;贛ATLAB 實(shí)現(xiàn)
2009-09-26 09:50:2317

基于BP神經(jīng)網(wǎng)絡(luò)的電路最優(yōu)測試集的生成設(shè)計(jì)

BP 神經(jīng)網(wǎng)絡(luò)是目前用于模擬電路故障診斷的神經(jīng)網(wǎng)絡(luò)之一。本文應(yīng)用BP 神經(jīng)網(wǎng)絡(luò)完成了實(shí)際電路最優(yōu)測試集的生成設(shè)計(jì),驗(yàn)證了基于BP 神經(jīng)網(wǎng)絡(luò)的最優(yōu)測試集的生成的可行性和有
2009-12-16 16:08:339

一種BP神經(jīng)網(wǎng)絡(luò)改進(jìn)算法的研究及應(yīng)用

本文首先介紹了傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)BP 算法的優(yōu)缺點(diǎn),并結(jié)合模擬退火算法局部搜索全局的特點(diǎn),提出將模擬退火算法和傳統(tǒng)的BP 算法相結(jié)合,形成一種新的BP 神經(jīng)網(wǎng)絡(luò)算法,有效的解
2010-01-09 11:57:0512

基于BP神經(jīng)網(wǎng)絡(luò)的2DPCA人臉識別算法

提出了基于BP 神經(jīng)網(wǎng)絡(luò)的2DPCA 人臉識別算法。通過圖像預(yù)處理改善圖像質(zhì)量,降低圖像維數(shù),然后用2DPCA 進(jìn)行特征提取,作為BP 神經(jīng)網(wǎng)絡(luò)的輸入,用改進(jìn)的BP 神經(jīng)網(wǎng)絡(luò)作為分類
2010-01-18 12:27:1418

BP神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)實(shí)例(MATLAB編程)

BP神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)實(shí)例(MATLAB編程):例1 采用動量梯度下降算法訓(xùn)練 BP 網(wǎng)絡(luò)。  訓(xùn)練樣本定義如下:  輸入矢量為       p =[-1 -2 3  1  
2010-02-08 13:20:08125

BP神經(jīng)網(wǎng)絡(luò)在異向介質(zhì)基本結(jié)構(gòu)分析中的應(yīng)用

為了減少傳統(tǒng)數(shù)值分析法由于厚度諧振而引起的結(jié)果錯誤問題,實(shí)現(xiàn)異向介質(zhì)高分析精度與高效率的共存,建立基于反向傳播多層前饋型神經(jīng)網(wǎng)絡(luò)(BP 神經(jīng)網(wǎng)絡(luò))的異向介質(zhì)電磁特性與
2010-02-09 14:57:457

基于BP神經(jīng)網(wǎng)絡(luò)的農(nóng)業(yè)氣象產(chǎn)量預(yù)報(bào)系統(tǒng)

在深入研究農(nóng)業(yè)氣象產(chǎn)量預(yù)報(bào)系統(tǒng)和BP神經(jīng)網(wǎng)絡(luò)工作原理的基礎(chǔ)上,針對現(xiàn)有系統(tǒng)預(yù)測精確性問題的不足,提出了基于BP神經(jīng)網(wǎng)絡(luò)的農(nóng)業(yè)氣象產(chǎn)量預(yù)報(bào)系統(tǒng)。在具體實(shí)現(xiàn)時(shí),為了加快網(wǎng)絡(luò)
2010-02-23 14:16:446

基于BP神經(jīng)網(wǎng)絡(luò)的自適應(yīng)有源消聲系統(tǒng)

采用神經(jīng)網(wǎng)絡(luò)控制方法! 建立了基于BP算法神經(jīng)網(wǎng)絡(luò)有源消聲實(shí)驗(yàn)系統(tǒng)" 實(shí)驗(yàn)證明基于BP算法的有源消聲實(shí)驗(yàn)系統(tǒng)具有良好的消聲效果和穩(wěn)定性"
2010-07-22 16:09:5311

BP神經(jīng)網(wǎng)絡(luò)及其改進(jìn)算法改善傳

BP神經(jīng)網(wǎng)絡(luò)及其改進(jìn)算法改善 傳感器特性BP算法即多層網(wǎng)絡(luò)誤差反傳算法,是近幾年在傳感器輸出信號補(bǔ)償技術(shù)領(lǐng)域中一種較新的方法,
2009-06-08 13:50:041875

BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法乘累加單元的FPGA設(shè)計(jì)

BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法乘累加單元的FPGA設(shè)計(jì) 0 引 言??? 神經(jīng)網(wǎng)絡(luò)(Neural Networks)是人工神經(jīng)網(wǎng)絡(luò)(Ar-tificial Neural Networks)的簡稱,是當(dāng)前的研究熱點(diǎn)之一。人
2009-11-13 09:50:051408

BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法乘累加單元的FPGA設(shè)計(jì)

BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法乘累加單元的FPGA設(shè)計(jì) 概 述神經(jīng)網(wǎng)絡(luò)(Neural Networks)是人工神經(jīng)網(wǎng)絡(luò)(Ar-tificial Neural Networks)的簡稱,是當(dāng)前的研究熱點(diǎn)之一。人腦在接受視覺
2010-03-29 10:05:12727

基于改進(jìn)BP神經(jīng)網(wǎng)絡(luò)的數(shù)字識別

針對BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)易陷入局部極
2011-03-07 14:59:5999

基于差分進(jìn)化的BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法

提出了一種基于改進(jìn)差分進(jìn)化算法BP神經(jīng)網(wǎng)絡(luò) 的計(jì)算機(jī)網(wǎng)絡(luò)流量預(yù)測方法。利用差分進(jìn)化算法的全局尋優(yōu)能力,快速地得到BP神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值;然后利用BP神經(jīng)網(wǎng)絡(luò)的非線性擬
2011-08-10 16:13:0731

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制器的研究與實(shí)現(xiàn)

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制器的研究與實(shí)現(xiàn):
2012-04-01 15:20:5115

基于BP神經(jīng)網(wǎng)絡(luò)算法PID控制器的研究與仿真

文中將BP神經(jīng)網(wǎng)絡(luò)的原理應(yīng)用于參數(shù)辨識過程,結(jié)合傳統(tǒng)的 PID控制算法,形成一種改進(jìn)型BP神經(jīng)網(wǎng)絡(luò)PID控制算法。該算法利用BP神經(jīng)網(wǎng)絡(luò)建立系統(tǒng)參數(shù)模型,能夠跟蹤被控對象的變化,取
2012-07-16 15:53:0851

基于BP神經(jīng)網(wǎng)絡(luò)的SVPWM算法的研究與仿真

基于BP神經(jīng)網(wǎng)絡(luò)的SVPWM算法的研究與仿真
2016-04-15 18:29:1611

基于模擬退火算法改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)算法

基于模擬退火算法改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)算法_周愛武
2017-01-03 17:41:320

BP神經(jīng)網(wǎng)絡(luò)在水質(zhì)參數(shù)預(yù)測中的應(yīng)用_張昕

BP神經(jīng)網(wǎng)絡(luò)在水質(zhì)參數(shù)預(yù)測中的應(yīng)用_張昕
2017-03-19 11:26:541

基于BP神經(jīng)網(wǎng)絡(luò)的唇裂圖像研究_朱霞

基于BP神經(jīng)網(wǎng)絡(luò)的唇裂圖像研究_朱霞
2017-03-19 11:33:110

BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法

BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法
2017-09-08 09:42:4810

BP神經(jīng)網(wǎng)絡(luò)風(fēng)速預(yù)測方法

針對BP神經(jīng)網(wǎng)絡(luò)風(fēng)速預(yù)測中存在的結(jié)構(gòu)不確定以及網(wǎng)絡(luò)過度擬合的問題,利用遺傳算法的全局搜索能力和模糊聚類算法的數(shù)據(jù)篩選能力,分別對BP神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)與數(shù)據(jù)進(jìn)行雙重優(yōu)化,提出了基于遺傳算法和聚類算法的改進(jìn)BP神經(jīng)網(wǎng)絡(luò)風(fēng)速預(yù)測方法,仿真表明,改進(jìn)風(fēng)速后的預(yù)測方法大大提高了風(fēng)速預(yù)測的準(zhǔn)確性。
2017-11-10 11:23:415

一種改進(jìn)的自適應(yīng)遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)

神經(jīng)網(wǎng)絡(luò)計(jì)算模型的優(yōu)化,運(yùn)用到汽車加油量計(jì)算中,通過比較標(biāo)準(zhǔn)BP網(wǎng)絡(luò)、Srinivas提出的自適應(yīng)遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)和改進(jìn)的自適應(yīng)遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)3種模型的計(jì)算誤差,驗(yàn)證得出改進(jìn)的自適應(yīng)遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)算法優(yōu)于另外兩種
2017-11-16 10:39:5513

基于BP神經(jīng)網(wǎng)絡(luò)的辨識

基于BP神經(jīng)網(wǎng)絡(luò)的辨識,1986年,Rumelhart等提出了誤差反向傳播神經(jīng)網(wǎng)絡(luò),簡稱BP網(wǎng)絡(luò)(Back Propagation),該網(wǎng)絡(luò)是一種單向傳播的多層前向網(wǎng)絡(luò)。 誤差反向傳播
2017-12-06 15:11:580

BP神經(jīng)網(wǎng)絡(luò)的稅收預(yù)測

針對傳統(tǒng)稅收預(yù)測模型精度較低的問題,提出一種將Adaboost算法BP神經(jīng)網(wǎng)絡(luò)相結(jié)合進(jìn)行稅收預(yù)測的方法。該方法首先對歷年稅收數(shù)據(jù)進(jìn)行預(yù)處理并初始化測試數(shù)據(jù)分布權(quán)值;然后初始化BP神經(jīng)網(wǎng)絡(luò)權(quán)值和閾值
2018-02-27 16:51:440

BP神經(jīng)網(wǎng)絡(luò)概述

BP 神經(jīng)網(wǎng)絡(luò)是一類基于誤差逆向傳播 (BackPropagation, 簡稱 BP) 算法的多層前饋神經(jīng)網(wǎng)絡(luò),BP算法是迄今最成功的神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法。現(xiàn)實(shí)任務(wù)中使用神經(jīng)網(wǎng)絡(luò)時(shí),大多是在使用 BP
2018-06-19 15:17:1542819

如何使用BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)PID參數(shù)的在線整定及MATLAB仿真

PID 控制算法簡單、應(yīng)用廣泛,既能消除余差,又能提高系統(tǒng)的穩(wěn)定性,但其P 環(huán)節(jié)、I 環(huán)節(jié)、D 環(huán)節(jié)的控制參數(shù)卻參數(shù)難以整定;BP 神經(jīng)網(wǎng)絡(luò)算法具有很強(qiáng)的數(shù)字運(yùn)算能力,因此,可通過BP 神經(jīng)網(wǎng)絡(luò)
2019-10-11 16:06:4838

MATLAB和BP人工神經(jīng)網(wǎng)絡(luò)算法源代碼與演示程序詳細(xì)資料免費(fèi)下載

本文檔的主要內(nèi)容詳細(xì)介紹的是MATLAB和BP人工神經(jīng)網(wǎng)絡(luò)算法源代碼與演示程序詳細(xì)資料免費(fèi)下載 解壓后,運(yùn)行CMMATools.exe即可 用于演示BP人工神經(jīng)網(wǎng)絡(luò)算法
2020-03-23 08:00:005

BP神經(jīng)網(wǎng)絡(luò)的概念

BP神經(jīng)網(wǎng)絡(luò)是一種多層的前饋神經(jīng)網(wǎng)絡(luò),其主要的特點(diǎn)是:信號是前向傳播的,而誤差是反向傳播的。具體來說,對于如下的只含一個隱層的神經(jīng)網(wǎng)絡(luò)模型:輸入向量應(yīng)為n個特征
2020-09-24 11:51:3512811

如何使用FPGA實(shí)現(xiàn)BP神經(jīng)網(wǎng)絡(luò)的仿真線設(shè)計(jì)

該文提出了一種采用BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)仿真線的方法。首先采用遺傳算法優(yōu)化神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),用離線訓(xùn)練后的BP神經(jīng)網(wǎng)絡(luò)逼近傳輸線的傳遞函數(shù),然后用STAM算法以較少的存儲空間實(shí)現(xiàn)BP神經(jīng)網(wǎng)絡(luò)的激勵函數(shù)近似
2021-02-03 16:26:0012

淺析深度神經(jīng)網(wǎng)絡(luò)(DNN)反向傳播算法(BP)

在 深度神經(jīng)網(wǎng)絡(luò)(DNN)模型與前向傳播算法 中,我們對DNN的模型和前向傳播算法做了總結(jié),這里我們更進(jìn)一步,對DNN的反向傳播算法(Back Propagation,BP)做一個總結(jié)。 1. DNN反向傳播算法要解決的問題
2021-03-22 16:28:223110

BP神經(jīng)網(wǎng)絡(luò)算法原理

個 2×3×1 的神經(jīng)網(wǎng)絡(luò)即輸入層有兩個節(jié)點(diǎn), 隱層含三個節(jié)點(diǎn), 輸出層有一個節(jié)點(diǎn),神經(jīng)網(wǎng)絡(luò)如圖示。
2021-03-25 10:03:0510

BP神經(jīng)網(wǎng)絡(luò)基本原理簡介

BP神經(jīng)網(wǎng)絡(luò)基本原理資料免費(fèi)下載。
2021-04-25 15:36:1616

BP神經(jīng)網(wǎng)絡(luò)原理及應(yīng)用

BP神經(jīng)網(wǎng)絡(luò)原理及應(yīng)用說明。
2021-04-27 10:48:1114

人工智能-BP神經(jīng)網(wǎng)絡(luò)算法的簡單實(shí)現(xiàn)

人工智能-BP神經(jīng)網(wǎng)絡(luò)算法的簡單實(shí)現(xiàn)說明。
2021-05-25 11:30:1612

基于遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)及其仿真研究

基于遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)及其仿真研究說明。
2021-05-31 17:01:0616

BP神經(jīng)網(wǎng)絡(luò)的研究進(jìn)展

通過對傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)缺點(diǎn)的分析,從參數(shù)選取、BP算法、激活函數(shù)、網(wǎng)絡(luò)結(jié)構(gòu)4個方面綜述了其改進(jìn)方法。介紹了各種方法的原理、應(yīng)用背景及其在BP神經(jīng)網(wǎng)絡(luò)中的應(yīng)用,同時(shí)分析了各種方法的優(yōu)缺點(diǎn)。指出不斷提高網(wǎng)絡(luò)的訓(xùn)練速度、收斂性和泛化能力仍是今后的研究方向,并展望了BP神經(jīng)網(wǎng)絡(luò)的研究重點(diǎn)。
2021-06-01 11:28:435

基于BP神經(jīng)網(wǎng)絡(luò)的摔倒檢測算法綜述

來采集人體運(yùn)動數(shù)據(jù),使用簡單的統(tǒng)計(jì)學(xué)方法對數(shù)據(jù)進(jìn)行特征提取,并以提取到的特征為BP神經(jīng)網(wǎng)絡(luò)的輸入神經(jīng)元,用 Levenberg-marquardt算法訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型,使其能夠實(shí)現(xiàn)摔倒檢測的功能。實(shí)驗(yàn)結(jié)果表眀,該算法可以較妤地識別摔倒,其準(zhǔn)確率可以
2021-06-16 16:09:015

神經(jīng)網(wǎng)絡(luò)BP與RBF的比較

神經(jīng)網(wǎng)絡(luò)BP與RBF的比較說明。
2021-06-18 09:59:1122

從0到1實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)Python

有個事情可能會讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個詞讓人覺得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡單。
2023-01-31 17:06:09658

Python從頭實(shí)現(xiàn)一個神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理1

有個事情可能會讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個詞讓人覺得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡單。 這篇文章完全是為新手準(zhǔn)備的。我們會通過用Python從頭實(shí)現(xiàn)一個神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:05:34451

Python從頭實(shí)現(xiàn)一個神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理2

有個事情可能會讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個詞讓人覺得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡單。 這篇文章完全是為新手準(zhǔn)備的。我們會通過用Python從頭實(shí)現(xiàn)一個神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:06:13377

Python從頭實(shí)現(xiàn)一個神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理3

有個事情可能會讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個詞讓人覺得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡單。 這篇文章完全是為新手準(zhǔn)備的。我們會通過用Python從頭實(shí)現(xiàn)一個神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:06:18467

Python從頭實(shí)現(xiàn)一個神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理4

有個事情可能會讓初學(xué)者驚訝:神經(jīng)網(wǎng)絡(luò)模型并不復(fù)雜!『神經(jīng)網(wǎng)絡(luò)』這個詞讓人覺得很高大上,但實(shí)際上神經(jīng)網(wǎng)絡(luò)算法要比人們想象的簡單。 這篇文章完全是為新手準(zhǔn)備的。我們會通過用Python從頭實(shí)現(xiàn)一個神經(jīng)網(wǎng)絡(luò)來理解神經(jīng)網(wǎng)絡(luò)的原理。本文的脈絡(luò)是:
2023-02-27 15:06:21443

卷積神經(jīng)網(wǎng)絡(luò)python代碼

的卷積操作,將不同層次的特征進(jìn)行提取,從而通過反向傳播算法不斷優(yōu)化網(wǎng)絡(luò)權(quán)重,最終實(shí)現(xiàn)分類和預(yù)測等任務(wù)。 在本文中,我們將介紹如何使用Python實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò),并詳細(xì)說明每一個步驟及其原理。 第一步:導(dǎo)入必要的庫 在開始編寫代碼前,我們需要先導(dǎo)入一些必要的Python庫。具體如
2023-08-21 16:41:35615

人工神經(jīng)網(wǎng)絡(luò)bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

人工神經(jīng)網(wǎng)絡(luò)bp神經(jīng)網(wǎng)絡(luò)的區(qū)別? 人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)是一種模仿人腦神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)和功能的計(jì)算模型,也被稱為神經(jīng)網(wǎng)絡(luò)(Neural
2023-08-22 16:45:182941

BP神經(jīng)網(wǎng)絡(luò)算法的基本流程

訓(xùn)練經(jīng)過約50次左右迭代,在訓(xùn)練集上已經(jīng)能達(dá)到99%的正確率,在測試集上的正確率為90.03%,單純的BP神經(jīng)網(wǎng)絡(luò)能夠提升的空間不大了,但kaggle上已經(jīng)有人有卷積神經(jīng)網(wǎng)絡(luò)在測試集達(dá)到了99.3%的準(zhǔn)確率。
2024-03-20 09:58:4440

已全部加載完成