一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卡都去哪了?AI超算成了GPU的無底黑洞

E4Life ? 來源:電子發(fā)燒友 ? 作者:周凱揚 ? 2024-06-26 09:03 ? 次閱讀

電子發(fā)燒友網(wǎng)報道(文/周凱揚)AI大模型似乎陷入了一個怪圈,盡管對于深度學(xué)習(xí)、數(shù)據(jù)優(yōu)化和爆款應(yīng)用的研究從來沒有終止,但大多數(shù)人開口問的第一句話就是,“你有卡嗎”?從行業(yè)對GPU的狂熱追求來看,未來繼續(xù)擴展大模型的機會,似乎只會被大公司掌握在手中。

xAI拉攏戴爾和超微打造AI超算,馬斯克繼續(xù)買買買

xAI作為2023年3月才成立的一家初創(chuàng)公司,在構(gòu)建算力基礎(chǔ)設(shè)施的投入上卻一點也不含糊,不過這也多虧了背后的金主埃隆馬斯克。近日,戴爾CEO Michael Dell宣布他們正在打造一個由英偉達GPU驅(qū)動的AI工廠,為xAI的Grok模型提供動力。不過馬斯克隨即表示,戴爾只是其中一半服務(wù)器集群的供應(yīng)商,另外一半的超算系統(tǒng)則是由超微打造。

由此推測,這一AI工廠應(yīng)該就是馬斯克在月初提到的10萬塊H100液冷訓(xùn)練集群了,盡管有兩家供應(yīng)商同時為xAI打造服務(wù)器,但市面上的GPU需求依然維持在高位,還需要幾個月這一集群才會正式上線,用于Grok的下一代大模型迭代。

H100這張2023年發(fā)布的GPU可以說是目前全球大模型算力供應(yīng)的主力,無論是OpenAI還是xAI,其最新模型都是基于該GPU訓(xùn)練迭代的。H100無論是顯存容量、帶寬和算力性能都實現(xiàn)了一輪新的突破,甚至可以說H100帶動了這一代AI大模型的發(fā)展,然而在GTC之后,馬斯克已經(jīng)開始眼饞最新的B200了。他認為考慮到目前的技術(shù)演進速度,實在不值得把1GW的電力供應(yīng)給H100。

為此xAI也已經(jīng)開始在規(guī)劃下一代系統(tǒng),據(jù)馬斯克透露,該系統(tǒng)將由30萬塊B200 GPU組成,但上線時間需要等到明年夏天了。B200速度高達H100的4倍,更是可以輕松做到單機柜1exaflop的算力表現(xiàn),更何況在能耗成本上,B200相比H100改善了20多倍,即便是大規(guī)模部署,也不會讓廠商面臨供電和碳足跡的雙重困擾。

盡管xAI的AI超算目標(biāo)已經(jīng)明確,但對于馬斯克旗下的另一家公司特斯拉而言,其技術(shù)路線依舊不算明朗。雖然特斯拉也開啟了新一輪的英偉達GPU采購潮,但其內(nèi)部也在繼續(xù)發(fā)展自研的Dojo超算。只不過近年來Dojo的情報越來越少,就連馬斯克自己也將其列入“遠景計劃”之列。

OpenAI與微軟,“鯨級”超算已在全速運轉(zhuǎn)中

相信不少人都還記得去年11月首度上榜TOP500的微軟超算Eagle,這臺空降第三的AI超算憑借14400個英偉達H100和561PFlop/s的算力,不僅讓Azure系統(tǒng)再次闖進了前十,還拿下了當(dāng)下云端超算最高的排名。而當(dāng)時的Azure還未部署完成,雖然最新的排名中Eagle依然維持在第三的位置,但其核心數(shù)已經(jīng)近乎翻倍。

這臺超算為OpenAI的GPT-4訓(xùn)練和推理提供了極大的助力,但這遠沒有達到微軟的財力極限。早在3月底,就有消息傳出微軟和OpenAI正在打造一個代號名為“星門”的AI超算,耗資高達1000億美元。微軟CTO Kevin Scott稱不少有關(guān)其超算計劃的推測簡直錯得可笑,但也指出他們確實會為這一計劃付出不少努力和成本。

在上個月舉辦的Microsoft Build中,Kevin Scott公開透露了他們未來的超算擴展計劃。2020年,微軟為OpenAI打造了第一臺AI超算,正是因為這臺機器才孕育了GPT-3。而他們構(gòu)建的下一個系統(tǒng),也就是Eagle,則用于訓(xùn)練GPT-4。Kevin Scott選擇了用海洋生物來描述這些超算的規(guī)模,比如首臺超算可以用鯊魚來描述,Eagle則是虎鯨,而他們的下一臺超算規(guī)模則可以比擬藍鯨。

Kevin Scott更是強調(diào),別看現(xiàn)在Eagle可以排到第三名的位置,從現(xiàn)在開始微軟每個月都會部署五臺同樣規(guī)模的超算,也就是說每月都有至少搭載72000個H100 GPU或同等規(guī)模系統(tǒng)投入應(yīng)用,每月帶來2.8exaflops的算力增長。同時,他們用來連接GPU的高速和InfiniBand線纜可以繞地球至少五周,也就是說長度在20萬公里以上總線纜長度。

很明顯,作為已經(jīng)憑借OpenAI獲得成功的微軟來說,接下來需要贏下的就是這場Scaling之戰(zhàn)。

TPU和GPU并用,谷歌的Hypercomputer

盡管不少巨頭都在考慮如何自研芯片來降低購置海量GPU帶來的成本,但真的成功將其用于大模型的訓(xùn)練中去的,已經(jīng)迭代至第六代的谷歌TPU,恰好就為谷歌解決了這個問題。TPU作為谷歌和博通聯(lián)合設(shè)計了幾代的產(chǎn)品,在谷歌自己推出的各種新模型訓(xùn)練與推理中,重要性已經(jīng)等同于英偉達的GPU了。

谷歌本身作為在AI算法和大模型上耕耘了諸多時間的巨頭,從設(shè)計芯片之初就知道他們需要何種計算資源,正因如此,TPU幾乎將所有的面積都分給了低精度的張量計算單元。這種ASIC方案也讓谷歌大幅降低了打造AI Hypercomputer的成本。

但谷歌作為云服務(wù)廠商巨頭還是逃不開通用性的問題,谷歌的TPU更多是為Gemini的模型做了優(yōu)化,盡管TPU支持PyTorch、Tensorflow等常見AI模型,但在追求極致性能的選擇上,還是難以媲美GPU。正因如此,在谷歌和其他大模型開發(fā)者的眼中,TPU固然性能不弱,但更像是一個性價比之選。用于已經(jīng)成功商業(yè)化模型的降本增效屬于不錯的選擇,但如果想要在這個競爭激烈的大模型市場殺出重圍,那就只有谷歌能將TPU物盡其用。

在不少AI芯片廠商的宣傳中,為了抬高自己的專用產(chǎn)品定位,將英偉達的GPU還是定性為圖形處理單元??稍贖100這種規(guī)模的GPU上,無論是性能和能效,也毫不輸某些專用開發(fā)環(huán)境下的ASIC,至于未來更復(fù)雜的圖形處理,英偉達也推出了L4 GPU這樣的對應(yīng)方案。

在今年GTC上,谷歌的云服務(wù)部門也宣布和英偉達達成深度合作關(guān)系,通過英偉達的H100和L4 GPU支持使用其云服務(wù)的AI開發(fā)者。同時谷歌也將購置GB200 NVL72系統(tǒng),基于谷歌云的A3實例為開發(fā)者提供DGX Cloud的云端LLM托管方案,這也是對現(xiàn)有H100機器的升級。除此之外,就連谷歌自己的JAX框架,也在雙方的合作之下,在英偉達的GPU上得到了支持??梢钥闯觯雀柽€是采取兩手抓的策略,TPU和GPU一并重要。

全力追逐Scaling Laws的大廠們

對于AI大模型而言,模型大小、數(shù)據(jù)集大小和計算成本之間不僅組成了三元關(guān)系,也代表了模型性能。而Scaling Laws這一擴展法則定義了三者之間勢必會存在某種比例擴展,只不過如今看來,其邊際效應(yīng)已經(jīng)變得越來越大。以GPT為例,如果GPT-6繼續(xù)按照這樣的比例擴展下去,且不說性能提升有限,即便微軟這樣的商業(yè)巨頭也很難撐起成本的劇增。

可就是這樣微不可察的差距,甚至對于AI大模型的常見應(yīng)用聊天機器人來說只是速度和精度上的一些差距,卻決定了他們在之后的十幾年里能否繼續(xù)制霸下去。微軟作為已經(jīng)在操作系統(tǒng)上實現(xiàn)霸權(quán)地位的廠商,自然也明白先入為主的重要性。

在邊際效應(yīng)的影響下,即便后入局的巨頭,也有不少迎頭趕上的機會,比如近期傳出正在秘密研發(fā)Metis聊天機器人的亞馬遜。亞馬遜同樣擁有自研服務(wù)器芯片的技術(shù)積累,但主要優(yōu)勢還是在CPU上,AI加速器相關(guān)的產(chǎn)品(Inferentia和Trainium)依舊有比較大的改進空間,而且與亞馬遜自己的業(yè)務(wù)還沒有緊密結(jié)合起來。如果亞馬遜愿意去打造這樣一個聊天機器人應(yīng)用,很有可能后續(xù)也會加強在GPU上的投入,而不再緊緊作為云托管方案。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4882

    瀏覽量

    130393
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    33554

    瀏覽量

    274198
收藏 人收藏

    評論

    相關(guān)推薦

    DeepSeek推動AI力需求:800G光模塊的關(guān)鍵作用

    數(shù)據(jù)傳輸速率,減少帶寬瓶頸,成為數(shù)據(jù)中心和AI集群架構(gòu)優(yōu)化的重點。光模塊速率的躍升不僅提升了傳輸效率,也為大規(guī)模并行計算任務(wù)提供必要的帶寬保障。 800G光模塊如何解決DeepSeek大規(guī)模
    發(fā)表于 03-25 12:00

    力破局:科通技術(shù)以"AI大模型+AI芯片"重構(gòu)智底座

    “科通技術(shù)”)推出的“DeepSeek+AI芯片”全場景方案,在云AI領(lǐng)域取得重大突破。除了GPU力總量,云AI的一大挑戰(zhàn)來源于
    的頭像 發(fā)表于 03-17 11:14 ?340次閱讀

    國家平臺推出AI生態(tài)加速計劃

    向有需求的企業(yè)免費開放為期三個月的DeepSeek API接口使用權(quán)。DeepSeek作為國家互聯(lián)網(wǎng)平臺的重要技術(shù)成果,其滿血版模型鏡像已正式上線,并將通過API接口的形式,為企業(yè)提供強大的AI計算能力。 此外,該計劃還包括
    的頭像 發(fā)表于 02-14 09:16 ?412次閱讀

    GPU力租用平臺有什么好處

    當(dāng)今,GPU力租用平臺為科研機構(gòu)、企業(yè)乃至個人開發(fā)者提供靈活高效的力解決方案。下面,AI部落小編帶您深入探討
    的頭像 發(fā)表于 02-07 10:39 ?332次閱讀

    融合 南京信易達發(fā)布全新“智能力融合平臺”

    1月7日,南京信易達發(fā)布旗下最新力平臺“C-MOM智能力融合平臺V3.0”,并更新全新的UI視覺與交互系統(tǒng)。 該平臺集成了HPC
    的頭像 發(fā)表于 01-08 10:56 ?436次閱讀
    <b class='flag-5'>超</b><b class='flag-5'>算</b>智<b class='flag-5'>算</b>融合 南京信易達發(fā)布全新“智能<b class='flag-5'>算</b>力融合平臺”

    小米加速布局AI大模型,搭建GPU集群

    近日,有消息稱小米正在緊鑼密鼓地搭建自己的GPU集群,旨在加大對AI大模型的投入力度。據(jù)悉,小米的大模型團隊在成立之初就已經(jīng)擁有6500張GP
    的頭像 發(fā)表于 12-28 14:25 ?430次閱讀

    力芯片 高性能 CPUGPUNPU 微架構(gòu)分析》第3篇閱讀心得:GPU革命:從圖形引擎到AI加速器的蛻變

    在數(shù)據(jù)挖掘工作中,我經(jīng)常需要處理海量數(shù)據(jù)的深度學(xué)習(xí)任務(wù),這讓我對GPU架構(gòu)和張量運算充滿好奇。閱讀《力芯片》第7-9章,讓我對這些關(guān)鍵技術(shù)有全新認識。 GPU架構(gòu)從早期的固定功能流
    發(fā)表于 11-24 17:12

    一文梳理:如何構(gòu)建并優(yōu)化GPU力中心?

    目前最常見的AI力中心部署的GPU集群大小為 2048、1024、512 和 256,且部署成本隨 GPU 數(shù)量線性增長。本文將以相對折中的1024
    的頭像 發(fā)表于 11-15 11:59 ?1071次閱讀
    一文梳理:如何構(gòu)建并優(yōu)化<b class='flag-5'>GPU</b>云<b class='flag-5'>算</b>力中心?

    【一文看懂】大白話解釋“GPUGPU力”

    隨著大模型的興起,“GPU力”這個詞正頻繁出現(xiàn)在人工智能、游戲、圖形設(shè)計等工作場景中,什么是GPU,它與CPU的區(qū)別是什么?以及到底什么是GPU
    的頭像 發(fā)表于 10-29 08:05 ?2032次閱讀
    【一文看懂】大白話解釋“<b class='flag-5'>GPU</b>與<b class='flag-5'>GPU</b><b class='flag-5'>算</b>力”

    【「力芯片 | 高性能 CPU/GPU/NPU 微架構(gòu)分析」閱讀體驗】--全書概覽

    、GPU、NPU,給我們剖析力芯片的微架構(gòu)。書中有對芯片方案商處理器的講解,理論聯(lián)系實際,使讀者能更好理解力芯片。 全書共11章,由淺入深,較系統(tǒng)全面進行講解。下面目錄對全書
    發(fā)表于 10-15 22:08

    名單公布!【書籍評測活動NO.43】 力芯片 | 高性能 CPU/GPU/NPU 微架構(gòu)分析

    這個想法被否決,因為投入較大、難以落地,且客戶對力的認同遠不及今天這種高度。 這幾年間其實我們聯(lián)系甚少,但是作者一直沒有脫離對芯片的應(yīng)用和關(guān)注。特別是目睹GPU從消費電子轉(zhuǎn)向力芯
    發(fā)表于 09-02 10:09

    力服務(wù)器為什么選擇GPU

    隨著人工智能技術(shù)的快速普及,力需求日益增長。智中心的服務(wù)器作為支撐大規(guī)模數(shù)據(jù)處理和計算的核心設(shè)備,其性能優(yōu)化顯得尤為關(guān)鍵。而GPU服務(wù)器也進入了大眾的視野,成為高性能計算的首選。那么,為什么
    的頭像 發(fā)表于 07-25 08:28 ?1123次閱讀
    <b class='flag-5'>算</b>力服務(wù)器為什么選擇<b class='flag-5'>GPU</b>

    摩爾線程與師者AI攜手完成70億參數(shù)教育AI大模型訓(xùn)練測試

    近日,國內(nèi)知名的GPU制造商摩爾線程與全學(xué)科教育AI大模型“師者AI”聯(lián)合宣布,雙方已成功完成了一項重要的大模型訓(xùn)練測試。此次測試依托摩爾線程夸娥(KUAE)千
    的頭像 發(fā)表于 06-14 16:31 ?807次閱讀

    集群解決大模型訓(xùn)力需求,建設(shè)面臨哪些挑戰(zhàn)

    解決大模型訓(xùn)練對力需求的巨大增長問題,尤其是現(xiàn)在模型參數(shù)量從百億級、千億級邁向萬億級。 ? 國內(nèi)外企業(yè)積極構(gòu)建萬集群 ? 目前,在國際上,包括微軟、Google、Meta等AI領(lǐng)域的巨頭,都已落子
    的頭像 發(fā)表于 06-02 06:18 ?5319次閱讀
    萬<b class='flag-5'>卡</b>集群解決大模型訓(xùn)<b class='flag-5'>算</b>力需求,建設(shè)面臨哪些挑戰(zhàn)

    科學(xué)計算的下一輪創(chuàng)新,AI與數(shù)字孿生

    應(yīng)用的行列中來。 ? AI 與數(shù)字孿生 ? 在過去通用計算負載的時代,我們難以采用更大規(guī)模的計算集群來打造數(shù)字孿生。可隨著AI技術(shù),尤其是生成式
    的頭像 發(fā)表于 05-07 00:16 ?2257次閱讀
    科學(xué)計算的下一輪創(chuàng)新,<b class='flag-5'>AI</b><b class='flag-5'>超</b><b class='flag-5'>算</b>與數(shù)字孿生