一区二区三区三上|欧美在线视频五区|国产午夜无码在线观看视频|亚洲国产裸体网站|无码成年人影视|亚洲AV亚洲AV|成人开心激情五月|欧美性爱内射视频|超碰人人干人人上|一区二区无码三区亚洲人区久久精品

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>嵌入式技術(shù)>CNN誤差反傳時(shí)旋轉(zhuǎn)卷積核的簡(jiǎn)明分析

CNN誤差反傳時(shí)旋轉(zhuǎn)卷積核的簡(jiǎn)明分析

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

基于3D數(shù)據(jù)卷積神經(jīng)網(wǎng)絡(luò)的物體識(shí)別

FusionNet的核心是全新的、應(yīng)用于3D物體的三維卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)。我們必須在多個(gè)方面調(diào)整傳統(tǒng)的CNN以使其有效。
2020-01-16 16:36:003421

基于CNN的應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò)技術(shù)詳解

南洋理工大學(xué)的綜述論文《Recent Advances in Convolutional Neural Networks》對(duì)卷積神經(jīng)網(wǎng)絡(luò)的各個(gè)組件以及進(jìn)展情況進(jìn)行總結(jié)和解讀,其中涉及到 CNN
2020-11-29 11:09:383098

基于CNN的點(diǎn)線聯(lián)合優(yōu)化估計(jì)相機(jī)姿態(tài)

提出了一種線檢測(cè)CNN(VLSE),其利用了新穎的線段表示和基于Stacked Hourglass network的定制混合卷積塊。
2022-12-01 09:42:51277

卷積神經(jīng)網(wǎng)絡(luò)(CNN)的工作原理 神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過(guò)程

前文《卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介:什么是機(jī)器學(xué)習(xí)?》中,我們比較了在微控制器中運(yùn)行經(jīng)典線性規(guī)劃程序與運(yùn)行CNN的區(qū)別,并展示了CNN的優(yōu)勢(shì)。我們還探討了CIFAR網(wǎng)絡(luò),該網(wǎng)絡(luò)可以對(duì)圖像中的貓、房子或自行車等對(duì)象進(jìn)行分類,還可以執(zhí)行簡(jiǎn)單的語(yǔ)音識(shí)別。本文重點(diǎn)解釋如何訓(xùn)練這些神經(jīng)網(wǎng)絡(luò)以解決實(shí)際問題。
2023-09-05 10:19:43865

使用Python卷積神經(jīng)網(wǎng)絡(luò)(CNN)進(jìn)行圖像識(shí)別的基本步驟

Python 卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像識(shí)別領(lǐng)域具有廣泛的應(yīng)用。通過(guò)使用卷積神經(jīng)網(wǎng)絡(luò),我們可以讓計(jì)算機(jī)從圖像中學(xué)習(xí)特征,從而實(shí)現(xiàn)對(duì)圖像的分類、識(shí)別和分析等任務(wù)。以下是使用 Python 卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行圖像識(shí)別的基本步驟。
2023-11-20 11:20:331467

CNN卷積

`前言卷積神經(jīng)網(wǎng)絡(luò)在深度學(xué)習(xí)領(lǐng)域是一個(gè)很重要的概念,是入門深度學(xué)習(xí)必須搞懂的內(nèi)容。CNN圖像識(shí)別的關(guān)鍵——卷積當(dāng)我們給定一個(gè)"X"的圖案,計(jì)算機(jī)怎么識(shí)別這個(gè)圖案
2018-10-17 10:15:50

卷積神經(jīng)網(wǎng)絡(luò)CNN介紹

【深度學(xué)習(xí)】卷積神經(jīng)網(wǎng)絡(luò)CNN
2020-06-14 18:55:37

卷積神經(jīng)網(wǎng)絡(luò)原理及發(fā)展過(guò)程

Top100論文導(dǎo)讀:深入理解卷積神經(jīng)網(wǎng)絡(luò)CNN(Part Ⅰ)
2019-09-06 17:25:54

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

分析了目前的特殊模型結(jié)構(gòu),最后總結(jié)并討論了卷積神經(jīng)網(wǎng)絡(luò)在相關(guān)領(lǐng)域的應(yīng)用,并對(duì)未來(lái)的研究方向進(jìn)行展望。卷積神經(jīng)網(wǎng)絡(luò)(convolutional neural network,CNN) 在計(jì)算機(jī)視覺[1-
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的整體網(wǎng)絡(luò)結(jié)構(gòu)和發(fā)展過(guò)程

Top100論文導(dǎo)讀:深入理解卷積神經(jīng)網(wǎng)絡(luò)CNN(Part Ⅱ)
2019-08-22 14:20:39

卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介:什么是機(jī)器學(xué)習(xí)?

抽象人工智能 (AI) 的世界正在迅速發(fā)展,人工智能越來(lái)越多地支持以前無(wú)法實(shí)現(xiàn)或非常難以實(shí)現(xiàn)的應(yīng)用程序。本系列文章解釋了卷積神經(jīng)網(wǎng)絡(luò) (CNN) 及其在 AI 系統(tǒng)中機(jī)器學(xué)習(xí)中的重要性。CNN 是從
2023-02-23 20:11:10

卷積神經(jīng)網(wǎng)絡(luò)(CNN)是如何定義的?

什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22

卷積deconvolution引起的棋盤效應(yīng)及存在的弊端

卷積deconvolution引起的棋盤效應(yīng)?kernel size無(wú)法被stride整除的原因?解決卷積deconvolution存在的弊端的思路?卷積deconvolution如何實(shí)現(xiàn)更好的采樣 ?
2020-11-04 08:08:00

Github開源的數(shù)字手勢(shì)識(shí)別CNN模型簡(jiǎn)析

2.概述一個(gè)簡(jiǎn)單的AI開發(fā)sampleGithub開源的數(shù)字手勢(shì)識(shí)別CNN模型,識(shí)別數(shù)字0-10十一種手勢(shì)類LeNet-5,兩個(gè)卷積層,兩個(gè)池化層,一個(gè)全連接層,一個(gè)Softmax輸出層3.RKNN
2022-04-02 15:22:11

MCU200開發(fā)板上的蜂鳥E203軟跑得動(dòng)卷積神經(jīng)網(wǎng)絡(luò)嗎?

請(qǐng)問芯來(lái)科技的MCU200開發(fā)板上的蜂鳥E203軟跑得動(dòng)卷積神經(jīng)網(wǎng)絡(luò)嘛
2023-08-16 06:49:00

TF之CNNCNN實(shí)現(xiàn)mnist數(shù)據(jù)集預(yù)測(cè)

TF之CNNCNN實(shí)現(xiàn)mnist數(shù)據(jù)集預(yù)測(cè) 96%采用placeholder用法+2層C及其max_pool法+隱藏層dropout法+輸出層softmax法+目標(biāo)函數(shù)cross_entropy法+
2018-12-19 17:02:40

TF之CNN:Tensorflow構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)CNN的嘻嘻哈哈事之詳細(xì)攻略

TF之CNN:Tensorflow構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)CNN的嘻嘻哈哈事之詳細(xì)攻略
2018-12-19 17:03:10

sTm32可以做卷積濾波圖片嗎?

sTm32可以做卷積濾波圖片嗎
2023-09-21 07:17:26

van-自然和醫(yī)學(xué)圖像的深度語(yǔ)義分割:網(wǎng)絡(luò)結(jié)構(gòu)

一、寫在前面:網(wǎng)絡(luò)架構(gòu)的設(shè)計(jì)主要是基于CNN結(jié)構(gòu)延伸出來(lái)的。主要的改進(jìn)方式有兩點(diǎn):新神經(jīng)架構(gòu)的設(shè)計(jì)(不同深度,寬度,連接性或者拓?fù)浣Y(jié)構(gòu))或設(shè)計(jì)新的組件(或者層)。下面我們逐個(gè)去分析了解。本文涉及到
2021-12-28 11:03:35

van-自然和醫(yī)學(xué)圖像的深度語(yǔ)義分割:網(wǎng)絡(luò)結(jié)構(gòu)

一、寫在前面:網(wǎng)絡(luò)架構(gòu)的設(shè)計(jì)主要是基于CNN結(jié)構(gòu)延伸出來(lái)的。主要的改進(jìn)方式有兩點(diǎn):新神經(jīng)架構(gòu)的設(shè)計(jì)(不同深度,寬度,連接性或者拓?fù)浣Y(jié)構(gòu))或設(shè)計(jì)新的組件(或者層)。下面我們逐個(gè)去分析了解。本文涉及到
2021-12-28 11:06:01

【uFun試用申請(qǐng)】基于cortex-m系列卷積神經(jīng)網(wǎng)絡(luò)算法的圖像識(shí)別

項(xiàng)目名稱:基于cortex-m系列卷積神經(jīng)網(wǎng)絡(luò)算法的圖像識(shí)別試用計(jì)劃:本人在圖像識(shí)別領(lǐng)域有三年多的學(xué)習(xí)和開發(fā)經(jīng)驗(yàn),曾利用nesys4ddr的fpga開發(fā)板,設(shè)計(jì)過(guò)基于cortex-m3的軟
2019-04-09 14:12:24

一文詳解CNN

1 CNN簡(jiǎn)介 CNN卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks),是一類包含卷積計(jì)算的神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)(deep learning)的代表算法之一,在圖像識(shí)別
2023-08-18 06:56:34

關(guān)于對(duì)信號(hào)的卷積問題

本帖最后由 煒君子 于 2017-7-24 19:05 編輯 做了一個(gè)簡(jiǎn)單的“卷積和相關(guān)分析模塊”,當(dāng)信號(hào)均為低頻時(shí),卷積卷積、自相關(guān)、互相關(guān)運(yùn)算都很正常;但是當(dāng)頻率達(dá)到10^4級(jí)
2017-07-24 19:05:04

典型的ZYNQ SoC結(jié)構(gòu)圖/系統(tǒng)框架

硬件加速,最典型的架構(gòu)就是將需要加速的大運(yùn)算量邏輯部署到FPGA上,而將流程控制的邏輯部署到arm上。典型的ZYNQ SoC結(jié)構(gòu)如圖1。    CNN簡(jiǎn)介  CNN全稱卷積神經(jīng)網(wǎng)絡(luò),包括卷積
2021-01-15 17:09:15

利用Keras實(shí)現(xiàn)四種卷積神經(jīng)網(wǎng)絡(luò)(CNN)可視化

Keras實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)(CNN)可視化
2019-07-12 11:01:52

可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器上實(shí)現(xiàn)關(guān)鍵詞識(shí)別

。● 卷積神經(jīng)網(wǎng)絡(luò) (CNN)基于 DNN 的 KWS 的一大主要缺陷是無(wú)法為語(yǔ)音功能中的局域關(guān)聯(lián)性、時(shí)域關(guān)聯(lián)性、頻域關(guān)聯(lián)性建模。CNN 則可將輸入時(shí)域和頻域特征當(dāng)作圖像處理,并且在上面執(zhí)行 2D
2021-07-26 09:46:37

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)設(shè)計(jì)

FPGA 上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識(shí)別任務(wù)以及與機(jī)器學(xué)習(xí)類似的其他問題方面已大獲成功。在當(dāng)前案例中,針對(duì)在 FPGA 上實(shí)現(xiàn) CNN 做一個(gè)可行性研究
2019-06-19 07:24:41

如何利用卷積神經(jīng)網(wǎng)絡(luò)去更好地控制巡線智能車呢

巡線智能車控制中的CNN網(wǎng)絡(luò)有何應(yīng)用?嵌入式單片機(jī)中的神經(jīng)網(wǎng)絡(luò)該怎樣去使用?如何利用卷積神經(jīng)網(wǎng)絡(luò)去更好地控制巡線智能車呢?
2021-12-21 07:47:24

如何利用PyTorch API構(gòu)建CNN?

  很多人對(duì)于卷積神經(jīng)網(wǎng)絡(luò)(CNN)并不了解,卷積神經(jīng)網(wǎng)絡(luò)是一種前饋神經(jīng)網(wǎng)絡(luò),它包括卷積計(jì)算并具有很深的結(jié)構(gòu),卷積神經(jīng)網(wǎng)絡(luò)是深度學(xué)習(xí)的代表性算法之一。那么如何利用PyTorch API構(gòu)建CNN
2020-07-16 18:13:11

如何將DS_CNN_S.pb轉(zhuǎn)換為ds_cnn_s.tflite?

MIMRTX1064(SDK2.13.0)的KWS demo中放置了ds_cnn_s.tflite文件,提供demo中使用的模型示例。在 read.me 中,聲明我可以找到腳本,但是,該文檔中的腳本
2023-04-19 06:11:51

如何用卷積神經(jīng)網(wǎng)絡(luò)方法去解決機(jī)器監(jiān)督學(xué)習(xí)下面的分類問題?

人工智能下面有哪些機(jī)器學(xué)習(xí)分支?如何用卷積神經(jīng)網(wǎng)絡(luò)(CNN)方法去解決機(jī)器學(xué)習(xí)監(jiān)督學(xué)習(xí)下面的分類問題?
2021-06-16 08:09:03

怎樣進(jìn)行卷積?

怎樣才能對(duì)示波器的兩個(gè)通道進(jìn)行實(shí)時(shí)的卷積,通道是混沌信號(hào),求大神
2016-01-05 19:36:25

急求用matlab實(shí)現(xiàn)卷積的編程

y(n) =x(n)* h(n)上式的運(yùn)算關(guān)系稱為卷積運(yùn)算,式中 代表兩個(gè)序列卷積運(yùn)算。兩個(gè)序列的卷積是一個(gè)序列與另一個(gè)序列褶后逐次移位乘積之和,故稱為離散卷積,也稱兩序列的線性卷積。其計(jì)算的過(guò)程
2012-10-31 22:29:00

用于信號(hào)與系統(tǒng)的卷積運(yùn)算,在開始的任意信號(hào)方程要怎么輸入,才能在前面板直接輸方程呢?

用于信號(hào)與系統(tǒng)的卷積運(yùn)算,在開始的任意信號(hào)方程要怎么輸入,才能在前面板直接輸方程呢?
2015-09-21 15:23:42

計(jì)算卷積的方法有哪些

Winograd,GEMM算法綜述(CNN中高效卷積實(shí)現(xiàn))(上)
2020-06-04 09:06:20

多極旋轉(zhuǎn)變壓器誤差計(jì)算的分析

多極旋轉(zhuǎn)變壓器誤差計(jì)算的分析    多極旋轉(zhuǎn)變壓器電氣誤差計(jì)算方法,GJB2143—94國(guó)家軍用標(biāo)準(zhǔn)《多極和雙通道旋轉(zhuǎn)變壓器通用規(guī)范》規(guī)定,以基準(zhǔn)電
2009-12-10 08:42:331655

CNN結(jié)構(gòu)演化進(jìn)程

演化脈絡(luò)下圖所示CNN結(jié)構(gòu)演化的歷史,起點(diǎn)是神經(jīng)認(rèn)知機(jī)模型,已經(jīng)出現(xiàn)了卷積結(jié)構(gòu),但是第一個(gè)CNN模型誕生于1989年,1998年誕生了LeNet。隨著ReLU和dropout的提出,以及GPU和大數(shù)
2017-11-15 11:10:092412

卷積神經(jīng)網(wǎng)絡(luò)(CNN)的簡(jiǎn)單介紹及代碼實(shí)現(xiàn)

卷積神經(jīng)網(wǎng)絡(luò)(CNN)的基礎(chǔ)介紹見 ,這里主要以代碼實(shí)現(xiàn)為主。 CNN是一個(gè)多層的神經(jīng)網(wǎng)絡(luò),每層由多個(gè)二維平面組成,而每個(gè)平面由多個(gè)獨(dú)立神經(jīng)元組成。 以MNIST作為數(shù)據(jù)庫(kù),仿照LeNet-5
2017-11-15 12:27:3918947

【科普】卷積神經(jīng)網(wǎng)絡(luò)(CNN)基礎(chǔ)介紹

對(duì)卷積神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)進(jìn)行介紹,主要內(nèi)容包括卷積神經(jīng)網(wǎng)絡(luò)概念、卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)、卷積神經(jīng)網(wǎng)絡(luò)求解、卷積神經(jīng)網(wǎng)絡(luò)LeNet-5結(jié)構(gòu)分析、卷積神經(jīng)網(wǎng)絡(luò)注意事項(xiàng)。一、卷積神經(jīng)網(wǎng)絡(luò)概念 上世紀(jì)60年代
2017-11-16 01:00:0210692

卷積神經(jīng)網(wǎng)絡(luò)(CNN)在無(wú)人駕駛中應(yīng)用的3D感知與物體檢測(cè)

無(wú)人駕駛的感知部分作為計(jì)算機(jī)視覺的領(lǐng)域范圍,也不可避免地成為CNN發(fā)揮作用的舞臺(tái)。本文是無(wú)人駕駛技術(shù)系列的第八篇,深入介紹CNN卷積神經(jīng)網(wǎng)絡(luò))在無(wú)人駕駛3D感知與物體檢測(cè)中的應(yīng)用。 CNN簡(jiǎn)介
2017-11-16 12:53:4416166

卷積神經(jīng)網(wǎng)絡(luò)CNN圖解

。 于是在這里記錄下所學(xué)到的知識(shí),關(guān)于CNN 卷積神經(jīng)網(wǎng)絡(luò),需要總結(jié)深入的知識(shí)有很多: 人工神經(jīng)網(wǎng)絡(luò) ANN 卷積神經(jīng)網(wǎng)絡(luò) CNN 卷積神經(jīng)網(wǎng)絡(luò) CNN - BP算法 卷積神經(jīng)網(wǎng)絡(luò) CNN - LetNet分析 卷積神經(jīng)網(wǎng)絡(luò) CNN - caffe應(yīng)用 全卷積神經(jīng)網(wǎng) FCN 如果對(duì)于人工神經(jīng)網(wǎng)絡(luò)。
2017-11-16 13:18:4056168

卷積神經(jīng)網(wǎng)絡(luò)CNN架構(gòu)分析-LeNet

對(duì)于神經(jīng)網(wǎng)絡(luò)和卷積有了粗淺的了解,關(guān)于CNN 卷積神經(jīng)網(wǎng)絡(luò),需要總結(jié)深入的知識(shí)有很多:人工神經(jīng)網(wǎng)絡(luò) ANN卷積神經(jīng)網(wǎng)絡(luò)CNN 卷積神經(jīng)網(wǎng)絡(luò)CNN-BP算法卷積神經(jīng)網(wǎng)絡(luò)CNN-caffe應(yīng)用卷積神經(jīng)網(wǎng)絡(luò)CNN-LetNet分析 LetNet網(wǎng)絡(luò).
2017-11-16 13:28:012562

簡(jiǎn)單快捷地用小型Xiliinx FPGA加速卷積神經(jīng)網(wǎng)絡(luò)CNN

剛好在知乎上看到這個(gè)問題?如何用FPGA加速卷積神經(jīng)網(wǎng)絡(luò)CNN,恰巧我的碩士畢業(yè)設(shè)計(jì)做的就是在FPGA上實(shí)現(xiàn)CNN的架構(gòu),在此和大家分享。 先說(shuō)一下背景,這個(gè)項(xiàng)目的目標(biāo)硬件是Xilinx的PYNQ
2018-06-29 07:55:004537

局部聚類分析的FCN-CNN云圖分割方法

空氣中的塵埃、污染物及氣溶膠粒子的存在嚴(yán)重影響了大氣預(yù)測(cè)的有效性,毫米波雷達(dá)云圖的有效分割成為了解決這一問題的關(guān)鍵,本文提出了一種基于超像素分析的全卷積神經(jīng)網(wǎng)路FCN和深度卷積神經(jīng)網(wǎng)絡(luò)CNN
2017-12-15 16:44:520

基于CNN的圖文融合媒體的情感分析方法

基于卷積神經(jīng)網(wǎng)絡(luò)(CNN)的圖文融合媒體的情感分析方法。該方法融合圖像特征與三個(gè)不同級(jí)別(詞語(yǔ)級(jí)、短語(yǔ)級(jí)和句子級(jí))的文本特征構(gòu)建CNN模型,以分析比較不同層次的語(yǔ)義特征對(duì)情感預(yù)測(cè)的影響。在真實(shí)數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表
2017-12-23 09:45:400

3D卷積神經(jīng)網(wǎng)絡(luò)的手勢(shì)識(shí)別

傳統(tǒng)2D卷積神經(jīng)網(wǎng)絡(luò)對(duì)于視頻連續(xù)幀圖像的特征提取容易丟失目標(biāo)時(shí)間軸上的運(yùn)動(dòng)信息,導(dǎo)致識(shí)別準(zhǔn)確度較低。為此,提出一種基于多列深度3D卷積神經(jīng)網(wǎng)絡(luò)(3D CNN)的手勢(shì)識(shí)別方法。采用3D卷積核對(duì)
2018-01-30 13:59:192

旋轉(zhuǎn)變壓器的角度誤差校正系統(tǒng)設(shè)計(jì)

的優(yōu)點(diǎn),由同一電機(jī)帶動(dòng)光電編碼器和被測(cè)旋轉(zhuǎn)變壓器,以FPGA +ARM組成的控制模塊讀出光電編碼器和被測(cè)旋轉(zhuǎn)變壓器的角度,并進(jìn)行比較分析,測(cè)量旋轉(zhuǎn)變壓器的非線性誤差,建立誤差分析表,提出了一種根據(jù)系數(shù)進(jìn)行補(bǔ)償?shù)姆绞剑瑢?duì)旋轉(zhuǎn)變壓器的
2018-03-14 10:59:039

一種混合卷積窗及其在諧波分析中的應(yīng)用

電力系統(tǒng)穩(wěn)態(tài)信號(hào)非同步采樣時(shí),利用離散傅里葉變換分析諧波會(huì)使各頻率成分產(chǎn)生頻譜泄漏,增大了諧波參數(shù)的測(cè)量誤差。為進(jìn)一步抑制頻譜泄漏,提高諧波測(cè)量的準(zhǔn)確度,提出一種由矩形窗和余弦窗經(jīng)過(guò)卷積運(yùn)算
2018-03-28 10:22:481

CNN和RNN結(jié)合與對(duì)比,實(shí)例講解

的對(duì)比。 二、CNN與RNN對(duì)比 1、CNN卷積神經(jīng)網(wǎng)絡(luò)與RNN遞歸神經(jīng)網(wǎng)絡(luò)直觀圖 2、相同點(diǎn): 2.1. 傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的擴(kuò)展。 2.2. 前向計(jì)算產(chǎn)生結(jié)果,反向計(jì)算模型更新。 2.3. 每層神經(jīng)網(wǎng)絡(luò)
2018-09-06 22:32:01538

卷積網(wǎng)絡(luò)FCN進(jìn)行圖像分割

Networks for Semantic Segmentation》在圖像語(yǔ)義分割挖了一個(gè)坑,于是無(wú)窮無(wú)盡的人往坑里面跳。 全卷積網(wǎng)絡(luò) Fully Convolutional Networks CNN
2018-09-26 17:22:02491

卷積神經(jīng)網(wǎng)絡(luò)CNN架構(gòu)分析 - LeNet

。 于是在這里記錄下所學(xué)到的知識(shí),關(guān)于CNN 卷積神經(jīng)網(wǎng)絡(luò),需要總結(jié)深入的知識(shí)有很多: 人工神經(jīng)網(wǎng)絡(luò) ANN 卷積神經(jīng)網(wǎng)絡(luò) CNN 卷積神經(jīng)網(wǎng)絡(luò) CNN - BP算法 卷積神經(jīng)網(wǎng)絡(luò) CNN - caffe應(yīng)用 卷積神經(jīng)網(wǎng)絡(luò) CNN - LetNet分析 LetNet網(wǎng)絡(luò) 下圖是一個(gè)經(jīng)典的CNN結(jié)構(gòu),稱為
2018-10-02 07:41:01544

CNN表現(xiàn)更好,CV領(lǐng)域全新卷積操作OctConv厲害在哪里?

CNN卷積神經(jīng)網(wǎng)絡(luò)問世以來(lái),在計(jì)算機(jī)視覺領(lǐng)域備受青睞
2019-04-24 11:35:182499

圖神經(jīng)網(wǎng)絡(luò)GNN的卷積操作流程

的核心操作時(shí)卷積,GNN也是。CNN計(jì)算二維矩陣的卷積,GNN計(jì)算圖的卷積。那么我們定義好圖的傅里葉變換和圖的卷積就可以了,其媒介就是圖的拉普拉斯矩陣。
2019-06-08 17:13:003176

如何通過(guò)張量的降維來(lái)降低卷積計(jì)算量(CP分解)

CNN網(wǎng)絡(luò)中卷積運(yùn)算占據(jù)了最大的計(jì)算量,壓縮卷積參數(shù)可以獲得顯著的硬件加速器的性能提升。
2019-11-28 17:15:257090

一篇文章搞定CNN轉(zhuǎn)置卷積

CNN中,轉(zhuǎn)置卷積是一種上采樣(up-sampling)的方法。如果你對(duì)轉(zhuǎn)置卷積感到困惑,那么就來(lái)讀讀這篇文章吧。
2020-01-31 17:32:004241

卷積神經(jīng)網(wǎng)絡(luò):CNN的求解

CNN在本質(zhì)上是一種輸入到輸出的映射,它能夠?qū)W習(xí)大量的輸入與輸出之間的映射關(guān)系,而不需要任何輸入和輸出之間的精確的數(shù)學(xué)表達(dá)式,只要用已知的模式對(duì)卷積網(wǎng)絡(luò)加以訓(xùn)練,網(wǎng)絡(luò)就具有輸入輸出對(duì)之間的映射能力。
2020-08-24 16:04:052374

基于CNN和DenseBlock的導(dǎo)光板標(biāo)記線缺陷檢測(cè)

之間的成對(duì)相關(guān)性, 提高分類準(zhǔn)確率, 各步網(wǎng)絡(luò)結(jié)構(gòu)如圖4所示. 通過(guò)對(duì)實(shí)驗(yàn)的卷積神經(jīng)網(wǎng)絡(luò)算法的權(quán)重進(jìn)行分析發(fā)現(xiàn), 本文所設(shè)計(jì)的卷積神經(jīng)網(wǎng)絡(luò)算法僅需要極少的參數(shù)參與運(yùn)算.
2020-11-01 11:48:352441

如何去理解CNN卷積層與池化層計(jì)算?

概述 深度學(xué)習(xí)中CNN網(wǎng)絡(luò)是核心,對(duì)CNN網(wǎng)絡(luò)來(lái)說(shuō)卷積層與池化層的計(jì)算至關(guān)重要,不同的步長(zhǎng)、填充方式、卷積核大小、
2021-04-06 15:13:252453

MATLAB實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)CNN的源代碼

MATLAB實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)CNN的源代碼
2021-04-21 10:15:3616

想了解卷積神經(jīng)網(wǎng)絡(luò)看這篇就夠了

關(guān)于CNN, 第1部分:卷積神經(jīng)網(wǎng)絡(luò)的介紹 CNN是什么?:它們?nèi)绾喂ぷ?,以及如何在Python中從頭開始構(gòu)建一個(gè)CNN。 在過(guò)去的幾年里,卷積神經(jīng)網(wǎng)絡(luò)(CNN)引起了人們的廣泛關(guān)注,尤其是
2021-07-27 14:50:161705

信號(hào)與系統(tǒng)中卷積分析和總結(jié)

卷積”是信號(hào)與系統(tǒng)時(shí)域分析中的一個(gè)重要內(nèi)容。本文對(duì)此知識(shí)點(diǎn)進(jìn)行了詳細(xì)的分析和總結(jié),并給出了多道例題及詳細(xì)解答。 (一)常用信號(hào)的卷積表 首先,將常用信號(hào)的卷積、以及卷積的性質(zhì)整理成表格,這些信號(hào)
2021-09-29 17:28:1430860

自己動(dòng)手寫CNN Inference框架之 (二) conv2d

卷積CNN網(wǎng)絡(luò)中一個(gè)非常重要的操作(Operation或Op),關(guān)于卷積的數(shù)學(xué)原理,大家可以參考維基百科:Convolution。但是我們這里給大家介紹...
2022-02-07 11:49:370

什么是卷積神經(jīng)網(wǎng)絡(luò)(CNN)

卷積結(jié)構(gòu)為主,搭建起來(lái)的深度網(wǎng)絡(luò)(一般都指深層結(jié)構(gòu)的) CNN目前在很多很多研究領(lǐng)域取得了巨大的成功,例如: 語(yǔ)音識(shí)別,圖像識(shí)別,圖像分割,自然語(yǔ)言處理等。對(duì)于大型圖像處理有出色表現(xiàn)。 一般將圖片作為網(wǎng)絡(luò)的輸入,自動(dòng)提取特征,并且對(duì)圖片的變形(平移,比例縮放)等具有高度不變形
2023-02-09 14:34:382048

使用CNN進(jìn)行2D路徑規(guī)劃

卷積神經(jīng)網(wǎng)絡(luò)(CNN)是解決圖像分類、分割、目標(biāo)檢測(cè)等任務(wù)的流行模型。本文將CNN應(yīng)用于解決簡(jiǎn)單的二維路徑規(guī)劃問題。主要使用Python, PyTorch, NumPy和OpenCV。
2023-02-13 14:30:54406

干貨速來(lái)!詳析卷積神經(jīng)網(wǎng)絡(luò)(CNN)的特性和應(yīng)用

前文《 卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介:什么是機(jī)器學(xué)習(xí)? 》中,我們比較了在微控制器中運(yùn)行經(jīng)典線性規(guī)劃程序與運(yùn)行CNN的區(qū)別,并展示了CNN的優(yōu)勢(shì)。我們還探討了CIFAR網(wǎng)絡(luò),該網(wǎng)絡(luò)可以對(duì)圖像中的貓、房子或自行車
2023-03-27 22:50:02556

LargeKernel3D:在3D稀疏CNN中使用大卷積

2D CNN 使用大卷積代替小卷積,增大了卷積核的感受野,捕獲到的特征更偏向于全局,效果也得到了提升,這表明較大的 kernel size 很重要
2023-04-06 09:54:51545

可視化CNN和特征圖

作者:Ahzam Ejaz 來(lái)源: DeepHub IMBA 卷積神經(jīng)網(wǎng)絡(luò)(cnn)是一種神經(jīng)網(wǎng)絡(luò),通常用于圖像分類、目標(biāo)檢測(cè)和其他計(jì)算機(jī)視覺任務(wù)。CNN的關(guān)鍵組件之一是特征圖,它是通過(guò)對(duì)圖像
2023-04-12 10:25:05517

可視化CNN和特征圖

作者:AhzamEjaz來(lái)源:DeepHubIMBA卷積神經(jīng)網(wǎng)絡(luò)(cnn)是一種神經(jīng)網(wǎng)絡(luò),通常用于圖像分類、目標(biāo)檢測(cè)和其他計(jì)算機(jī)視覺任務(wù)。CNN的關(guān)鍵組件之一是特征圖,它是通過(guò)對(duì)圖像應(yīng)用卷積濾波器
2023-04-19 10:33:09430

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)技術(shù)的重要應(yīng)用之
2023-08-17 16:30:30804

卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)

卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種前饋神經(jīng)網(wǎng)絡(luò),常用于圖像處理、自然語(yǔ)言處理等領(lǐng)域中。它是一種深度學(xué)習(xí)(Deep
2023-08-17 16:30:35803

python卷積神經(jīng)網(wǎng)絡(luò)cnn的訓(xùn)練算法

python卷積神經(jīng)網(wǎng)絡(luò)cnn的訓(xùn)練算法? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)一直是深度學(xué)習(xí)領(lǐng)域重要的應(yīng)用之一,被廣泛應(yīng)用于圖像、視頻、語(yǔ)音等領(lǐng)域
2023-08-21 16:41:37859

卷積神經(jīng)網(wǎng)絡(luò)詳解 卷積神經(jīng)網(wǎng)絡(luò)包括哪幾層及各層功能

多維數(shù)組而設(shè)計(jì)的神經(jīng)網(wǎng)絡(luò)。CNN不僅廣泛應(yīng)用于計(jì)算機(jī)視覺領(lǐng)域,還在自然語(yǔ)言處理、語(yǔ)音識(shí)別和游戲等領(lǐng)域有廣泛應(yīng)用。下文將詳細(xì)地介紹CNN的各層及其功能。 1.卷積層(Convolutional
2023-08-21 16:41:404392

卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn) cnn卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)

卷積神經(jīng)網(wǎng)絡(luò)概述 卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn) cnn卷積神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural network,CNN)是一種基于深度學(xué)習(xí)技術(shù)的神經(jīng)網(wǎng)絡(luò),由于其出色的性能
2023-08-21 16:41:481659

卷積神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練步驟

卷積神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練步驟? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是一種常用的深度學(xué)習(xí)算法,廣泛應(yīng)用于圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等諸多領(lǐng)域。CNN
2023-08-21 16:42:00884

卷積神經(jīng)網(wǎng)絡(luò)的工作原理 卷積神經(jīng)網(wǎng)絡(luò)通俗解釋

CNN可以幫助人們實(shí)現(xiàn)許多有趣的任務(wù),如圖像分類、物體檢測(cè)、語(yǔ)音識(shí)別、自然語(yǔ)言處理和視頻分析等。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的工作原理并用通俗易懂的語(yǔ)言解釋。 1.概述 卷積神經(jīng)網(wǎng)絡(luò)是一個(gè)由神經(jīng)元構(gòu)成的深度神經(jīng)網(wǎng)絡(luò),由輸入層、隱藏層和輸出層組成。在卷積神經(jīng)網(wǎng)絡(luò)中,
2023-08-21 16:49:242213

卷積神經(jīng)網(wǎng)絡(luò)如何識(shí)別圖像

卷積神經(jīng)網(wǎng)絡(luò)如何識(shí)別圖像? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)由于其出色的圖像識(shí)別能力而成為深度學(xué)習(xí)的重要組成部分。CNN是一種深度神經(jīng)網(wǎng)絡(luò),其結(jié)構(gòu)
2023-08-21 16:49:271283

卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)發(fā)展 卷積神經(jīng)網(wǎng)絡(luò)三大特點(diǎn)

卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)發(fā)展歷程 卷積神經(jīng)網(wǎng)絡(luò)三大特點(diǎn)? 卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是深度學(xué)習(xí)領(lǐng)域
2023-08-21 16:49:391127

卷積神經(jīng)網(wǎng)絡(luò)基本結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)主要包括什么

卷積神經(jīng)網(wǎng)絡(luò)基本結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)主要包括什么 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是一種深度學(xué)習(xí)模型,廣泛用于圖像識(shí)別、自然語(yǔ)言處理、語(yǔ)音識(shí)別等領(lǐng)域
2023-08-21 16:57:193551

卷積神經(jīng)網(wǎng)絡(luò)層級(jí)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的卷積層講解

卷積神經(jīng)網(wǎng)絡(luò)層級(jí)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的卷積層講解 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)模型,在許多視覺相關(guān)的任務(wù)中表現(xiàn)出色,如圖
2023-08-21 16:49:423757

卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)的介紹 什么是卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)涉及的關(guān)鍵技術(shù) 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種用于圖像分類、物體識(shí)別、語(yǔ)音識(shí)別等領(lǐng)域
2023-08-21 16:49:461229

卷積神經(jīng)網(wǎng)絡(luò)算法有哪些?

算法。它在圖像識(shí)別、語(yǔ)音識(shí)別和自然語(yǔ)言處理等領(lǐng)域有著廣泛的應(yīng)用,成為近年來(lái)最為熱門的人工智能算法之一。CNN基于卷積運(yùn)算和池化操作,可以對(duì)圖像進(jìn)行有損壓縮、提取特征,有效降低輸入數(shù)據(jù)的維度,從而實(shí)現(xiàn)對(duì)大量數(shù)據(jù)的處理和分析。下面是對(duì)CNN算法的詳細(xì)介紹: 1. 卷積神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的基本
2023-08-21 16:50:01974

卷積神經(jīng)網(wǎng)絡(luò)算法三大類

卷積神經(jīng)網(wǎng)絡(luò)算法三大類 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是一種常用的人工神經(jīng)網(wǎng)絡(luò),它的主要應(yīng)用領(lǐng)域是圖像識(shí)別和計(jì)算機(jī)視覺方面。CNN通過(guò)卷積
2023-08-21 16:50:07752

卷積神經(jīng)網(wǎng)絡(luò)算法代碼python

卷積神經(jīng)網(wǎng)絡(luò)算法代碼python? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是深度學(xué)習(xí)中最為重要的算法之一。它在計(jì)算機(jī)視覺、自然語(yǔ)言處理、語(yǔ)音識(shí)別等領(lǐng)域有著
2023-08-21 16:50:09514

cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型 生成卷積神經(jīng)網(wǎng)絡(luò)模型

cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型 生成卷積神經(jīng)網(wǎng)絡(luò)模型? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),最初被廣泛應(yīng)用于計(jì)算機(jī)
2023-08-21 17:11:47680

cnn卷積神經(jīng)網(wǎng)絡(luò)原理 cnn卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn)是什么

cnn卷積神經(jīng)網(wǎng)絡(luò)原理 cnn卷積神經(jīng)網(wǎng)絡(luò)的特點(diǎn)是什么? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種特殊的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),主要應(yīng)用于圖像處理和計(jì)算機(jī)視覺領(lǐng)域
2023-08-21 17:15:251025

cnn卷積神經(jīng)網(wǎng)絡(luò)算法 cnn卷積神經(jīng)網(wǎng)絡(luò)模型

cnn卷積神經(jīng)網(wǎng)絡(luò)算法 cnn卷積神經(jīng)網(wǎng)絡(luò)模型 卷積神經(jīng)網(wǎng)絡(luò)(CNN)是一種特殊的神經(jīng)網(wǎng)絡(luò),具有很強(qiáng)的圖像識(shí)別和數(shù)據(jù)分類能力。它通過(guò)學(xué)習(xí)權(quán)重和過(guò)濾器,自動(dòng)提取圖像和其他類型數(shù)據(jù)的特征。在過(guò)去的幾年
2023-08-21 17:15:57940

cnn卷積神經(jīng)網(wǎng)絡(luò)matlab代碼

cnn卷積神經(jīng)網(wǎng)絡(luò)matlab代碼? 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN)是深度學(xué)習(xí)中一種常用的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),它是通過(guò)卷積層、池化層和全連接層等組合而成
2023-08-21 17:15:59798

cnn卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介 cnn卷積神經(jīng)網(wǎng)絡(luò)代碼

cnn卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介 cnn卷積神經(jīng)網(wǎng)絡(luò)代碼 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是目前深度學(xué)習(xí)領(lǐng)域中應(yīng)用廣泛的一種神經(jīng)網(wǎng)絡(luò)模型。CNN的出現(xiàn)
2023-08-21 17:16:131616

什么是卷積神經(jīng)網(wǎng)絡(luò)?如何MATLAB實(shí)現(xiàn)CNN?

卷積神經(jīng)網(wǎng)絡(luò)(CNN 或 ConvNet)是一種直接從數(shù)據(jù)中學(xué)習(xí)的深度學(xué)習(xí)網(wǎng)絡(luò)架構(gòu)。 CNN 特別適合在圖像中尋找模式以識(shí)別對(duì)象、類和類別。它們也能很好地對(duì)音頻、時(shí)間序列和信號(hào)數(shù)據(jù)進(jìn)行分類。
2023-10-12 12:41:49422

已全部加載完成